Identification of cost-effective timing schedules for G-CSF administration during chemotherapy by computer simulation of granulopoiesis

C. Engel 1, H. Franke 2, P. Stumph 2, M. Loeffler 2, V. Diehl 1, S. Schmitz 1

1 Klinik I für Innere Medizin, Universität zu Köln, Germany
2 Institut für Medizinische Informatik, Statistik und Epidemiologie, Universität Leipzig, Germany

Background
- Moderate dose-intensification of chemotherapy can be realized by G-CSF support to mitigate neutropenia.
- Scheduling of G-CSF is fixed in most regimens and intra-individual heterogeneity of hematotoxicity is neglected.
- Due to its high costs, G-CSF support increases overall costs of dose-intensified regimens considerably.
- In face of increasing costs, strategies need to be developed to use G-CSF more cost-effectively in chemotherapy.

Objective
- To give an example, how a computer simulation model of human granulopoiesis can be used to suggest optimal cost-effective timing schedules of G-CSF treatment in moderate dose-intensified chemotherapy regimens.
- Examples are shown for two different regimens:
 1. BEACOPP-escalated regimen
 2. CHOP-14-regimen

Method of simulating different timing schedules of G-CSF treatment (Example: BEACOPP-escalated regimen)

Considering heterogeneity of hematotoxicity
Patients are divided into three toxicity groups. Time course of leukocytes is shown here for the low and high toxicity group.

Simulation for a known G-CSF scheduling
Effect of chemotherapy on acute cell loss and temporary decrease of mitotic responsiveness is adapted for a known G-CSF scheduling, separately for the low and high toxicity group (model fit). The area above the simulated curve and a clinically relevant leukocyte threshold (1500 /µl) is calculated (AOC).

Prediction for unknown timing schedules of G-CSF
Unknown G-CSF timing schedules are simulated by systematic variations of the day of beginning and the days of duration of G-CSF treatment. AOCs are calculated for each schedule and plotted as a surface diagram (here: high toxicity group). Cost-effective schedules are defined to produce minimum AOC at shortest possible duration.

Results for the BEACOPP-escalated and CHOP-14 regimen

BEACOPP-escalated (low toxicity group)

CHOP-14 (low toxicity group)

BEACOPP-escalated (high toxicity group)

CHOP-14 (high toxicity group)

Conclusions, perspectives and open questions
- This mathematical model of granulopoiesis can be used to simulate the time course of leukocytes during chemotherapy treatment +/- G-CSF support.
- It can be used as a tool to identify optimal timing schedules of G-CSF support to reduce costs of intensified chemotherapy regimen with growth factor support.
- Similar models of thrombopoiesis or erythropoiesis may be used to identify optimal timing schedules of other growth factors.
- The model may be also used to simulate the effect of different dosings of different cytostatic drugs on hematopoiesis.

Further clinical data is needed to improve modelling of human hematopoiesis (granulopoiesis, erythropoiesis, thrombopoiesis):
- Data on chemotherapy with different doses of same drugs
- Data on chemotherapies with additions / deletions of one drug
- Data on same chemotherapies +/- G-CSF or varying timing schedules

This work was supported by the Deutsche Forschungsgemeinschaft (DFG)
LO 342 / 6-1 and SCHM 1191 / 1-1