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The paper presents effective and mathematically exact procedures for selection of variables which are
applicable in cases with a very high dimension as, for example, in gene expression analysis. Choosing
sets of variables is an important method to increase the power of the statistical conclusions and to
facilitate the biological interpretation. For the construction of sets, each single variable is considered
as the centre of potential sets of variables. Testing for significance is carried out by means of the
Westfall-Young principle based on resampling or by the parametric method of spherical tests. The
particular requirements for statistical stability are taken into account; each kind of overfitting is
avoided. Thus, high power is attained and the familywise type I error can be kept in spite of the large
dimension. To obtain graphical representations by heat maps and curves, a specific data compression
technique is applied. Gene expression data from B-cell lymphoma patients serve for the demon-
stration of the procedures.
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1 Selection of variables, a challenge for statisticians

Selection of variables and model choice play an important role in classical regression analysis, in
multivariate analysis of variance and in discriminant analysis, as well as in logistic regression and
other generalized linear models, and also in the Cox model of survival analysis. In all these
cases, the response variables are related to the explanatory variables by a linear setup with
unknown coefficients. Strategies for the search of essential variables are similar to the well-known
methods from least-squares theory. Decisions on the choice of variables are based, if available, on
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236 J. Léuter et al.: High-dimensional data analysis

multivariate overall tests, but mostly on conditional likelihood ratio tests for single variables. Most
software packages provide an exhaustive evaluation of all possible sets of variables, or alternatively
several variants of stepwise forward and backward selection procedures.

These approaches, however are fraught with difficulties. On a technical level, the computational
burden can be prohibitive: For p variables, there are 27 different sets of variables. Obviously,
these cannot all be checked step by step if p is large. Thus, for example, if p =20000 genes are
investigated in gene expression analysis, then 22°°% sets of variables exist, and this number is greater
than 10%°%.

Even if we do not consider this huge dimension, difficult problems arise. Many selection proce-
dures, in which “‘best subsets of variables™ are searched on the basis of a given sample, are disposed
to evaluate the variables too optimistically. Merely minimizing the deviations between the model
and the sample as, for example, in the “branch and bound algorithm” by Furnival and Wilson
(1974) does not guarantee the relevance of a subset. If, directly or indirectly, a structural or causal
analysis of the variables is carried out according to the method of least squares, then often
“overfitted” conclusions are obtained. The models fit the given samples very well, but they do not
sufficiently describe the true multivariate distributions at hand. The stepwise selection procedures
mentioned above are plausible at first sight but, in many cases, they do not attain the sets of
variables that are essential for practical applications. The important single variables and sets of
variables are possibly hidden by intercorrelations, “‘masked”, and therefore, they cannot be
recognized reliably.

The theory of the multivariate linear model developed elegantly in the last half century could
not yet overcome the great problems of statistical instability. Statisticians knew that a high
dimension and a high correlation between the variables render difficulties in the selection proce-
dures. Thus, many attempts of a computational stabilization have been made with “ridge”,
“shrinkage™, “penalizing”, “lasso’, “lars” etc. methods (Hoerl and Kennard, 1970; Anderson and
Blair, 1982; Tibshirani, 1996; Efron et al., 2004; Hastie, Tibshirani and Friedman, 2001). However,
such interventions suffered always from some subjectivity, and their precise mathematical con-
sequences remained unclear. The main deficiency was that the unified theoretical structure of the
procedures was lost and, in particular, the type I error rate could not be strictly kept in such a
selection.

This situation left statisticians with a dilemma for a long time: They wanted to get data with many
variables, with much information. On the other hand, they could not analyze the high-dimensional
data in a satisfactory way. If the algorithms implemented in the most popular statistical software
tools were applied, for example, with a stepwise selection procedure or with subjective ridge-
correction terms, then the derived statistical conclusions were uncontrollably biased. In the past,
until the nineties, the only actually reliable methods of selection of variables were the classical
parametric and non-parametric tests in connection with multiple testing procedures, like the closed
test principle, ultimately based on the rules by Bonferroni and Bonferroni/Holm. However, if
decisions on thousands or millions of unknown subsets must be made, then these methods were not
sufficient. Later, the works by Westfall and Young (1993), Lauter (1996) and Lauter, Glimm and
Kropf (1996, 1998) yielded an essential progress.

Goeman and Mansmann (2008) proposed a method to evaluate sets of variables arranged in a
given graph structure by means of logical bottom-up and top-down procedures. Meinshausen and
Biithlmann (2006) and Wasserman and Roeder (2007) investigated the selection of variables by
means of Tibshirani’s lasso method in asymptotical considerations, with the sample size n going to
infinity. The asymptotical proofs are ingenious but rather complicated. The authors need some
special assumptions about the relation of dimension p to size n, about the number of the ““non-null”
variables and about the covariance structure. The conclusions obtained are an important step
forward in overcoming the uncertainty of selection. However, they are still not generally applicable
to problems with a very large dimension p or a small sample size n in which no additional conditions
for the means and covariances are fulfilled.
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In this paper, we will report non-asymptotical methods that are exact for all dimensions p, all
sample sizes n and arbitrary structures of the parameters. We search one or several subsets of
variables that contain differential variables. Multiple testing based on the criterion of the familywise
type I error rate (FWER) is used.

We believe that inferential investigations in multivariate statistical analysis should be directed
toward methods which can substantially help to overcome the deficiencies of the last decades with
respect to overfitting, multicollinearity and, more general, statistical instability. Our paper is in-
tended to contribute to this aim.

2 An algorithm of selection based on the permutation method by Westfall
and Young

In the Interdisciplinary Centre for Bioinformatics of the Leipzig University, we are working on
procedures for the selection of variables which can be applied in gene expression analysis. The
dimension p is usually very large, for example, p ~ 20 000. The sample sizes are allowed to be much
smaller, for example, nx 100. We would like to take into account the correlation structure of the
given gene data. Generally, we assume that sets of genes with correlated patterns of expression are
more informative for the understanding of the biological gene functions than single genes listed
without giving their mutual relations. The sets of genes that originate from our data-dependent
construction reveal possible relationship between the genes within the sets, but also allow to assess
similarities and differences of all sets. Thus, they also support the biological interpretation, because
they have a broader characterization.

A basic principle of our selection procedures is that we start by considering each variable i} =
1,...,p as the source or the centre of potential subsets of variables. A variable i may be added to the
source variable 7; if the correlation between both variables exceeds a fixed minimum value. As an
application of our general method, we will treat in this paper the comparison of the mean vectors
u" and u® of two p-dimensional samples

M, _ (D (1) My - _ 1
X/ = (le XXy ), J=1, IO
@, _ @ .2 2y ; _ 2
XG/ = (x7 x5 . .x0), ) =1, ,n®

Then, we are interested in finding subsets m of variables, in which some of the mean values are
different: p{" = u® for at least one index iem. The corresponding data matrix with n = n) 4+ n®
rows is

X =
(D +n@)xp

The usual “total correlation coefficient” of the columns x; and x; of X

> ((xi, — %) (x; — X))

M = X)) (% — X) - (= X)) (X — X))
serves as the measure of similarity of the variables i; und i. The total mean vectors X; = 1,%; and
x; = 1,X;, without separating the groups (1) and (2), are applied. Here, 1,, denotes the n-dimensional
vector consisting only of ones. The variable i is considered as a potential partner of the source
variable 7; if it fulfills the necessary correlation condition rf] ;> ¢, with ¢ being a fixed positive
constant.

Of course, there are many different subsets starting all from the same source i;. The smallest

subset is {i;}, consisting only of the source variable, the largest subset is the so-called “maximum
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set” of source i, M, that contains all variables i satisfying the above correlation condition. Let
bas(i1,X,c) denote the set of all possible subsets generated by variable #;. The concept leads to a
“basis totality” of all candidate sets of our method, which is the union of the p partitions corre-
sponding to the sources ij = 1,...,p:

BASX,0)= | bas(ii,X,c).
=1, ...p

This strategy has already been described in Liuter, Glimm and Eszlinger (2005) and Lauter (2007).
The idea of forming “‘correlation neighbourhoods™ of the single variables was also applied by
Tibshirani and Wasserman (2006).

We will assume that the n row vectors (n>3)

1 1 . 2 2 .
v =) — Wy =1,y = — @y, =1, . n®

have a joint np-dimensional distribution which does not change with permuting the vectors
), My @7 A ial th tors y''/7 and y? have independent
Yay> > Yutnys Y1)/» -+ ¥/~ AS @ special case, the n vectors y ;)7 and y;7 can have independen
p-dimensional normal distributions N,(0’, ) with the same covariance matrix X. Then, the wide-
spread resampling procedure by Westfall and Young (1993, Section 2.3) can be applied to all subsets
m € BAS(X,c). For a set m consisting of the variables ij,i,...,i;, we use the test statistic
F, = Fp(Xi, Xy, ..., X;). A necessary condition for our procedure is that F,, must be monotone
increasing with respect to the sets m, i.e., Fy,, < F,,, for m; C m,. Mostly, we employ the sum of the

univariate beta statistics belonging to m
(1),,(2) (D) _ ()2
Z n'Yn X=X
E71= B[Z (1) (2) ( l— / : )_ .
D+ (x = X)) (X — X))

i:il, ,[',\ =1y, ...

Each value B; lies between 0 and 1. The Westfall-Young procedure is essentially based on the
empirical distribution of the maximal F,, values of all candidate subsets m. In the literature, the
denotation “max7 procedure” is used.

In this strategy, sets with many variables tend to give higher values of F,, than sets with few
variables. Sets with much information get priority over sets with little information. This corre-
sponds to our principle that repeatedly observable biological findings should be emphasized in the
statistical analysis rather than isolated ones. In particular, the maximum set M; produces a higher
value of F,, than any smaller subset m € bas(ij, X, ¢). The definitions of the subsets m of variables
and of the statistics F,,, do not contain any unstable elements. The only metric used substantially in
the procedure is the Euclidean metric of the n-dimensional space formed by the n independent
measurements. However, the space of the p variables does not need a special structure. Our sets of
variables are adaptively created at places where many variables are concentrated. Redundance in
the data is consciously utilized for stabilization.

Based on this construction of the subsets m and the statistics F,,,, a very effective Westfall-Young
algorithm can be applied. The maximum set M, “majorizes” all subsets m € bas(i;, X, ¢) with
respect to the statistic F,,,. Therefore, only the p maximum sets M;,..., M, must be taken into
consideration when determining the empirical maximum distribution according to the Westfall-
Young technique:

F*= max Fy, .
=1, ...p B!
The asterisk in this formula refers to the resampling permutations of the rows of X, corresponding
to the two-group comparison. We can take all possible row permutations or, if this number is to
large, we can resort to a randomly generated choice of them. In the special case of very small sample
sizes n'" and n®, data rotations of the rows can be used instead of permutations (Léuter et al.,
2005).
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A set m € BAS(X, ¢) shows a significant difference between groups (1) and (2) at significance level
o if the corresponding beta sum F,, =, B; fulfills the condition F,,>F}_,, where F}_, is the
(1—a) quantile from the empirical F* distribution. If FM, F@_ . F) are the increasingly ordered
resampling values of F*, then F} = F® with k arising from r(1—a) by upward rounding to the
next integer number. In practice, the p maximum sets are checked for significance first. Subse-
quently, if significance of a maximum set M; has been attained, the smaller subsets of the source 7
can also be evaluated. This procedure keeps the familywise type I error rate o in the strong sense: In
the series of all significant subsets 2, some falsely significant subsets—subsets consisting only of non-
differential variables—may appear with probability o, at most. Our procedure is suitable for arbi-
trary patterns of differential and non-differential variables.

The multiple level o is strictly kept in this Westfall-Young procedure, because the ““total sums of
products matrix” W = (X — X)'(X — X) is used for the construction of the totality BAS(X,c) of
subsets. Here, X = 1,X’ is the total mean matrix calculated without utilizing the groups (1) and (2).
This matrix W, the derived correlations r;; and the generated subsets do not change with permu-
tations of the rows of X. These facts are essential for the non-differential variables but, additionally,
they bring about that the unknown differences between the groups (1) and (2) have a promoting
effect on the subset generation and, thus, the power of the selection procedure can be improved.
Above all, it is important for the exactness of the selection procedure that the empirical F*
distribution dominates all null distributions, which can arise in BAS(X,c). For the justification
of the procedure in more detail, we refer to Lauter et al. (2005) and Léduter (2007, http://www.
izbi.uni-leipzig.de/izbi/Working%20Paper/2007/WP_15_Statistik.pdf).

Furthermore, one should note for reasons of mathematical strictness that different maximum
sets can randomly occur in this procedure, even if the means u"” and u®" are fixed and only n

fixed values (xg)) — 1) and (xg)) — u®) in different random permutations of “practice” are

considered as a special discrete distribution. In such a case, the distribution symmetry of
practice does not completely correspond to the suppositions on the null-related symmetry in our
algorithm, if variables with ugl) #* uﬁ” are included in the subsets. Obviously, the subsets consisting
only of variables with uﬁ.l) = ng) remain unchanged in all permutations of “practice”. However,
in spite of this random variability in the subset generation, our procedure fulfills always
the requirements on the familywise error rate because of the monotonicity property of the test
statistic F,,,.

In the literature (see, for example, Dudoit, Shaffer und Boldrick (2002)), the Westfall-Young
procedure is usually presented in a sequential, stepdown version. After some significances have been
obtained, the corresponding variables are removed from the data matrices. Then, the procedure is
started anew with a reduced number of variables in order to recognize further significances. Thus,
the power of the procedure can be increased. However, this strategy must not be used in our
selection procedure, because two tasks have to be fulfilled correctly in close connection: the gen-
eration of the subsets as well as the tests for significance. Careless application of the stepdown
technique to our random maximum sets could lead to the violation of the multiple level of sig-
nificance (Laduter, 2007, Chapter 7).

3 Application to the genomic exploration of B-cell lymphomas

Based on the above considerations, we will analyze gene expression data obtained from tumor tissue
in order to retrieve information on the oncogenic pathways involved in their pathogenesis and to
distinguish tumor subtypes exhibiting different clinical parameters or therapeutic outcomes. For
these studies, we utilize previously published gene expression data derived from B-cell lymphomas
(Hummel et al., 2006). The cases investigated there comprise patients with Burkitt’s lymphomas
and diffuse large B-cell lymphomas (DLBCL) from the Molecular Mechanisms in Malignant
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Lymphomas Network Project. For the analyses considered here, we use 108 lymphoma cases de-
fined as training data set in that study. The Affymetrix microarray employed provides 22277
different gene probesets. Based on transcriptional and genomic profiling, Hummel ez «l. have
proposed a molecular definition of Burkitt’s lymphoma (molecular Burkitt lymphoma, mBL).

Furthermore, to gain insight into the functional implications of different oncogenic pathways of
these lymphoma entities, we make use of a set of expression data generated by Bild et al. (2006).
This group of authors manipulated mammary epithelial cell cultures by overexpressing various
oncogenes and determined the expression patterns by genome-wide expression analysis. For our
considerations, we apply the data obtained from mammary cells overexpressing the c-myc oncogene
that is known to be highly expressed in many B-cell lymphomas and other tumors and to be causally
involved in their pathogenesis (Boxer and Dang, 2001). The data from 10 biological replicates of
c-myc overexpressing cells and 10 control cultures are compared.

We apply the Westfall-Young selection procedure of Section 2 to these lymphoma data. However,
we will use a special “two-matrices modification” in which the generation of subsets of variables and
the tests for significance are performed on two separate data sets. The generation of the subsets is
based on the clinical data matrix X, with 108 rows corresponding to the lymphoma patients and
with 22277 columns belonging to the genes. Thus, we obtain subsets of genes with correlated
expression. Each single gene is taken as a source for potential gene sets. The subsequent tests for
significance are based on the cell culture expression matrix X of the format 20 x 22277 from cells
overexpressing oncogenes versus control cells. This way, specific biological pathways are considered
with respect to their clinical implications.

The selection procedure of Section 2 is correct also in this two-matrices design. The restrictions
for the application of this procedure are even weakened, because the clinical and the experimental
data are stochastically independent. In this particular case, the stepdown version of the Westfall-
Young selection procedure as mentioned above may be employed as well (but we have not done
this).

In this application, the following parameters are set:

1. Only the genes i whose clinical sums of squares fulfill the condition (x; — X;)' (x; — X;) > 15 are
included in the proper algorithm of the procedure. This is the case for 6374 of the original
22277 genes. The expression values of these genes are replaced by the corresponding ranks
1,...,108.

2. The expression values of the cell lines are used without any changes.

3. The resampling is carried out with 1000 random permutations of the rows of X.

4. The multiple level of significance is o = 0.05.

5. The generation of the clinical gene subsets is performed under the condition r%] ;> 0.65.
Additionally, the correlations r;; are required to be positive.

6. The beta-sums statistic F,,, of a subset m is calculated only from the 13 highest beta values (if

more than 13 genes are present).

All these modifications do not impair the exact control of the multiple significance level. Further
details of the parameters of the selection procedure are given by Lauter (2007).

The selection algorithm yields 99 significant maximum sets of genes, 68 of which follow the
direction of c-myc expression changes in the cell experiments while 31 respond reciprocally. For
clarity of exposition, we restrict our interpretation to maximum sets that do not overlap with respect
to the genes included. Under this additional condition, eight significant maximum sets remain.
Fig. 1 displays a corresponding biplot according to Gabriel (1971). It shows both the 240 genes
comprised in the eight chosen sets and the 108 patients.

Inspection of the genes included in the obtained sets reveals that they can be allocated rather
clearly to cell biological processes. This is particularly remarkable as the statistical method gen-
erating these gene sets does not make use of any biological or clinical information. As an example,
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Figure 1 Biplot of the clinical gene expression data. Representation of 108 lymphoma
patients and 8 disjoint gene sets that correspond to the c-myc overexpression. The circles are
centered at the source genes and include all genes of the respective sets. The gene sets are
denoted by their source genes:

200936_at RPLS ribosomal protein 19 genes
201577 _at NMEI1 non-metastatic cells 1, protein (NM23A) expr. 33 genes
201947 s at CCT2 chaperonin containing TCP1, subunit beta 19 genes
211375 s_at  ILF3 interleukin enhancer binding factor 3 12 genes
201292 at TOP2A topoisomerase (DNA) II alpha 63 genes
208673 s _at  SFRS3 splicing factor, arginine/serine-rich 3 71 genes
204326_x_at MTIL metallothionein 1L 11 genes
210564_x_at CFLAR CASP8 and FADD-like apoptosis regulator 12 genes.

the maximum set with the source gene for RPL8 (ribosomal protein L8) also contains, among
others, 11 additional ribosomal protein genes (L3, L4, L10a, L14, L15, L18a, L36, S9, S16, S20,
S21), two genes encoding eukaryotic translation initiation factors (EIF3S3, EIF3F6), and the
eukaryotic translation elongation factor EEF1B2. Therefore, this gene set clearly represents the
cellular protein synthesis machinery. Likewise, the maximum set characterized by the source gene
TOP2A (topoisomerase (DNA) II alpha) includes a high number of genes coding for proteins
implicated in cell cycle regulation, like the cyclins A2 and B2, the cyclin-dependent kinase CDC?2,
the ki-67 antigen, and the transcription factor E2F, to name only a few. Hence this gene set
correlates closely with cell proliferation. Other significant gene sets are enriched in genes involved in
mitochondrial functions, splicing, or apoptosis regulation.

As evident from Fig. 1, two gene subsets represented by the apoptosis (programmed
cell death) inhibitor CFLAR (CASP8 and FADD-like apoptosis regulator/c-FLIP) and
the metallothionein family of metal-binding proteins (MTIL), are clearly separated from
the other ones. Interestingly, the mBL cases shift towards the six subsets to the right,
indicating higher expression of those genes in mBL, whereas the other cases (notmBL) preferentially
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cluster close to the CFLAR and MTIL subsets. Hence, the sclected gene sets are able to
separate mBL and not-mBL patients on the basis of their expression levels. It is to be emphasized
that our algorithm did not use the information on mBL diagnosis to produce and select the gene
subsets.

4 Data compression and graphical representation

In this section, we will discuss how the relation between the individuals and the identified
sets of variables can be visualized. For the application from Section 3, the clinical data matrix X
with n =108 patients and p = 22277 genes is used. We define an “individual coordinate”

b — \/T Xji — i
V-1 = %) (- X))

for a patient j and a gene i. Moreover, we define an “‘individual set coordinate™
k' _ Ziem kj'
jn =T S
Zhem Ziem Fhi
for a patient j and a gene set m, where r;; in the denominator are the usual correlations of the genes
_ (i — Xp) (X; — X))
V(xn = X5) (x5 — Xp) - (X7 — X)) (X7 — X))

This construction is statistically justified because each k2, is beta distributed, k2, ~B(},%52), and the

T'hi

n
equation »_ kfm = 7 is valid, if the rows of X, are independently and identically distributed as
=1

N,(my,X). These facts mean, that the individual coordinates kj, of the sets m have no
differences with respect to the scales and the covariance structures of the variables. The individual
set coordinates kj, form a matrix K, so that each patient j receives a unique numerical
characterization for each gene set m. In our example from Section 3, matrix K has the format
108 x 8.

To obtain graphical representations of the patients and the gene sets, matrix K is subjected to a
two-dimensional projection with a smoothing effect. The n-dimensional eigenvalue problem

10
0 4

is solved by the first two eigenvectors vy, v, and the corresponding eigenvalues 41, A,. The projection
is provided by Ky = VV’K. Thus, a compressed description of the individual gene expression of all
sets m is obtained, which roughly shows the behaviour of the observed data. Here, I, denotes the
2 x 2 identity matrix.

The two-dimensional biplot with respect to the gene sets is given by the matrix of two columns,

(KK’)V = VA, V= (V] Vz), A= ( )’ V'V = 12

K'V

use this information to get an order of the patients and an order of the gene sets which correspond
to the main tendencies of the gene expression: Each row of V and K'V is standardized to norm 1,
and it is put on the unit circle in the biplot plane. Then, a sorting of the patients and of the gene sets
is obtained from the corresponding points on the unit circle, so that neighbouring patients and
neighbouring gene sets are correlated as highly as possible. The largest gap on the unit circle
between the patients and between the gene sets, respectively, marks the beginning and the end of the
ordered patient or gene-set sequence. Fig. 2 shows the positions of all eight significant gene sets on
the unit circle in our example.

< Vv ) The rows of V correspond to the patients, the rows of K'V = K'(»)V to the gene sets. We
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This leads to the representation of the clinical expression data X in the heat map of Fig. 3. The
ordered patients are drawn in the horizontal and the ordered gene sets in the vertical direction.
Light fields indicate high gene expression, dark ones low expression. We can observe that the
molecular Burkitt patients (dark) lie compactly on the left-hand side in the ordered sequence of
patients. Also the order of the gene sets reflects well the similarities in their expression. Thus, large
blocks of patients and gene sets are obtained, in which a uniformly high or uniformly low gene
expression occurs.

beginning

end

Figure 2 Ordered gene-set sequence on the unit circle
in the biplot plane that corresponds to matrix K.

RPL8
NME1

ccT2

ILF3
TOP2A

SFRS3 |

MTIL
CFLAR

Figure 3 Heat map to show the expression of 240 genes belonging to 8 ordered
gene sets in 69 ordered lymphoma patients. Light-grey = high expression, dark-
grey = low expression.
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RPLS |
NME1L

CcCcT2

ILF3
TOP2A

SFRS3

MTIL
CFLAR

Figure 4 Expression as in Fig. 3, but in the representation by set coordinates
(matrix K).

RPLS
NME1

CCT2

ILF3
TOP2A

SFRS3

niL |
CFLAR

Figure 5 Expression as in Fig. 3, but in the representation by smoothed set
coordinates (matrix K)).

The heat map of Fig. 4 provides the representation of the individual set coordinates K instead of
the original gene expression values. The single genes are not depicted in this graph. Furthermore,
Fig. 5 summarizes the data via the smoothed individual set coordinates K. Here, only the main
tendencies of the gene expression are visible.

The heat maps of Figs. 3-5 have been additionally modified in such a way that patients with a
weak gene expression are removed. We apply the beta test

n n—3
ﬁ("jzl +3) = Boso (LT)
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reLs | fAf%
SFRS3 \f
ILF3

TOPZ2A !
ceT2 !

NMEL |
CFLAR |

MTIL

Figure 7 Smoothed expression curves of 8 gene sets in 69 ordered lymphoma patients
(matrix K)).

to each of the patients j = 1,...,n, where v;; and v, are the elements of the jth row of V. Patients who are
not significant are excluded. Thus, in the given example, the number of patients is reduced from 108 to 69.

A further way of illustrating the results of the analysis is to draw curves instead of the heat maps.
Then the expression of the significant gene sets does no longer appear in the rough light-dark
representation, but in a continuous curve representation. Fig. 6 shows the curves corresponding to
K and Fig. 7 the smoothed curves corresponding to K.

5 An algorithm of selection based on parametric tests
The preceding sections have shown that the non-parametric Westfall-Young procedure is an

effective tool for high-dimensional selection of variables. This procedure has the advantage that an
arbitrary test statistic F,, may be used which increases with increasing set m.
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Since 1996 exact high-dimensional parametric tests are available (Lauter, 1996; Lauter et al., 1996,
1998). This raises the question whether corresponding parametric selection procedures with high
effectivity can also be developed from these methods. Sections 5 and 6 are devoted to this problem.

A basic algorithm for searching single significant variables in the comparison of u”’ and u®” has been
introduced by Kropf (2000). The p variables i are sorted according to decreasing values of the “total
sums of squares” (x; — X;) (X; — X;). Then, univariate beta tests (or corresponding F tests) without an o
adjustment are carried out in the obtained order, as long as significances result. This procedure of
stepwise testing keeps the familywise type I error rate oo (FWER) in the strong sense. However, this
procedure is not scale invariant, because large total sums of squares are preferred. Nevertheless, this
approach is sensible since large total sums of squares reflect large differences between the groups (1), (2)
and since variables with very small fluctuations which could be artefacts are suppressed.

Some modifications of this procedure have been proposed: by Westfall, Kropf and Finos (2004),
by Hommel and Kropf (2005), and by Lauter (2007). The modification by Hommel and Kropf uses
tests on the stricter significance level o/k but, correspondingly, the sequence of the tests is stopped
only when the kth non-significant result is obtained. Here, k is a fixed positive integer.

The application of this stepwise principle to sets of variables would demand that all candidate
subsets are sorted according to an order criterion and are successively tested until non-significances
appear. If the number of variables is very high and the subsets are not uniquely pre-specified, then
this procedure becomes computationally expensive. In the past, we have tried to construct a suitable
algorithm (Lauter ef al., 2005), but we could not yet find an acceptable method for high dimensions.
Therefore, a further proposal is now presented.

We start once more from our basis totality of subsets BAS(X,¢) =, _; ,bas(i1,X,c), ie.
from the union over all partitions bas(ii, X, c¢) defined by the source variables iy = 1,...,p. To
test a subset m € BAS(X, ¢), the univariate beta statistic of the corresponding source variable i; is
used:

B, = = —,
PO+ n® (x, = X)) (X, — X))

() _ =(2)y2
nn® (X, — %) g, p(L =2y o e
I 2’ 2 Or“il _l’l'i]'
Thus, all subsets having the same source variable 7 are assessed by the same test statistic. This is the
crucial point in the procedure proposed here. For the exactness of the beta test, we assume that the
rows of X have independent multivariate normal distributions:

XE})),~N17(”(1),7 Z)s ] = 17"-; n(l)’
xg))’~Np(y(2)’,E), j=1,..,n?.

The order criterion is given by

O(m) = (x;, — X;,)'(x;, — X;,) Z abs(r;,;).

iem

It depends on the total sum of squares of the source variable i1 analogously to Kropf’s procedure.
Additionally, the value of O(m) increases with increasing size of the subset 7, namely according to
the total correlations r;,; between the source variable 7, and the partner variables i (see Section 2). By
this strategy, a source variable i; and the pertaining univariate beta test get a high weight if
many highly-correlated partners i exist for i;. This corresponds to our principles of multivariate
stabilization. Thus, the seemingly univariate testing method becomes a properly multivariate
method.

Still, the aim is to identify subsets m containing at least one differential variable. The
application of our general searching method (Kropf and Léauter, 2002) requires that all subsets
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m € BAS(X,c¢) are evaluated in decreasing order of O(m) as long as significances
occur. An o adjustment is not necessary. All subsets recognized as significant in this stepwise
process satisfy the conditions of a multiple testing procedure with the familywise type I error rate a.
The testing procedure is based on the general rules of the spherical tests. If my is the set of all
variables i with ,ugl) = u?), then the first subset m with m C my in the stepwise process is uniquely
determined (with probability 1) by the total sums of products matrix belonging to my,
Xy — Ximy) Xomy — Xony)- Therefore, the decisive B, test is also uniquely determined and, thus, the
multiple level o of the procedure is exactly kept, according to the theorems in Lauter ez al. (1996,
1998).

Under the conditions of the given special selection procedure, where the subsets m are assessed
only by the univariate statistic B;,, a shortcut strategy can be applied. In this case, the first non-
significant testing result will always appear at a maximum set M, (see Section 2), because O(m) <
O(M;)) for m € bas(i1, X, ¢).

Therefore, in practice, the p maximum sets should be tested separately until the first non-sig-
nificant maximum set, M nor, occurs. Thus, the threshold value for the order criterion, O(M, mon), is

found. All preceding maximum sets, M1, M), Mo, . .., prove to be significant. Furthermore, some
particularly interesting subsets m contained in bas(iy, X, ¢), iy = i(ll), i(l ,i(13), ..., can be investigated
for significance besides the maximum sets M), M0), M), .... One has only to apply the condition

O(m)> O(Mer). Additional requirements, for example, with respect to a small number of variables
belonging to m can then also be fulfilled.

It should be noted that the above mentioned modification by Hommel and Kropf is valid in this
procedure. However, the modifications by Westfall ez al. (2004) and by Léauter (2007) can no longer
be used.

® oRAB7L1
L) .
e (]
.
L)

Figure 8 Biplot of the DLBCL patients. Representation of 68 patients and 2 disjoint
gene sets with their circles of the included genes. The gene sets are denoted by the source

genes:
218700_s_at RAB7L1 RAB7, member RAS oncogene family-like 1 33 genes
211896_s_at DCN decorin 34 genes.
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6 Application of the parametric selection procedure

Previously, DLBCL patients have been divided into two subgroups based on a molecular signature
developed by Alizadeh et al. (2000) and Rosenwald et al. (2002). These two entities, the activated
B-cell-like lymphomas (ABC) and the germinal center B-cell-like lymphomas (GCB) differ
significantly with respect to prognosis. We will employ our selection procedure to find gene subsets
that separate the patients of these lymphoma types. Expression data from 28 ABC and 40 GCB
cases (Hummel et al., 2006) are applied for this analysis.

The following special values of the parameters are used in the selection procedure:

1. Only the genes i whose sums of squares fulfill the conditions (x; —X;)'(x; — X;) > 25 are
included in the proper algorithm of the procedure. Then 1433 genes remain from the given
22283 genes.

2. The multiple level of significance is o = 0.05.

3. The generation of the gene subsets is performed under the condition rfli > 0.40. Additionally,
the positivity of the correlations r;; is required.

4. A gene i is assigned to the source gene i; only if gene i has a smaller sum of squares than
gene iy.

5. The correlation sum ), abs(r;;) of the order criterion O(m) is calculated only from the 30
highest correlations (if more than 30 genes are present).

These modifications do not impair the maintenance of the multiple significance level.

The parametric selection algorithm yields 13 significant gene maximum sets that are able to
discriminate ABC from GCB cases. One maximum set shows higher expression in ABC than in
GCB, 12 maximum sets have a lower expression in ABC than in GCB. The testing modification by
Hommel and Kropf identifies 15 significant maximum sets if the number k = 2 is used. When the
additional condition of disjointed sets is applied, only two gene maximum sets remain.

The first gene set characterized by the source gene RAB7L1 (RAB7, member RAS oncogene
family-like 1) includes, among others, the trancription factor STAT3 and several of its target genes,
all related to apoptosis control. The other gene set represents a remarkable collection of genes
encoding proteins of the extracellular matrix, including DCN (decorin), collagens and fibronectin.

ABC I

RABZL1

DCN

Figure 9 Heat map to show the expression of 67 genes belonging to two disjoint gene sets in
41 ordered DLBCL patients. Light-grey = high expression, dark-grey = low expression.
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ABC .

RABZL1

DCN

Figure 10 Expression as in Figure 9, but in the representation by set coordinates (matrix
K =K.
)

Il - mi

RAB7LY |

DCN

Figure 11 Expression curves of two gene sets in 41 ordered DLBCL patients (matrix
K= K(z)).

Fig. 8 reveals the biplot of both gene sets and the 68 patients. In Figs. 9, 10 and 11, the
corresponding heat maps and the expression curves are presented. In the same way as in
Section 4, the ordered sequence of patients, with reduction to the essential part (41 instead of 68), is
used.

As is apparent from Figs. 9—11, the RAB7L1 subset discriminates quite precisely between ABC
and GCB cases (ABC>GCB), whereas the DCN subset is low in most ABC cases but subdivides
the GCBs in high and low expressors. It is intriguing that according to our recent analyses, this
latter subset of extracellular matrix genes is also able to discriminate between patients of different
survival prognosis (manuscript in preparation).

Taken together, these studies demonstrate that our algorithms allow to identify biologically
meaningful sets of correlated genes in tumor gene expression data bases and to use such gene sets to
discriminate between different disease entities.
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7 Conclusion

This paper presents effective and mathematically exact algorithms of selection of variables which are
also applicable in cases with a very large dimension. Both non-parametric and parametric strategies
are used. The particular requirements of the statistical stability are taken into account, so that high
power is attained and the familywise type I error can be kept in spite of the large dimension. The
methodology associates biological hypothesis generation and biological interpretation with mathe-
matical and computational conciseness. The R package SETGEN implementing our Westfall-Young
procedure is available at http://www.people.imise.uni-leipzig.de/maciej.rosolowski/software.html
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