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Abstract Previously, we have modeled hematopoietic stem cell organization by a sto-
chastic, single cell-based approach. Applications to different experimental systems
demonstrated that this model consistently explains a broad variety of in vivo and in vitro
data. A major advantage of the agent-based model (ABM) is the representation of hetero-
geneity within the hematopoietic stem cell population. However, this advantage comes
at the price of time-consuming simulations if the systems become large. One example in
this respect is the modeling of disease and treatment dynamics in patients with chronic
myeloid leukemia (CML), where the realistic number of individual cells to be considered
exceeds 106. To overcome this deficiency, without losing the representation of the inherent
heterogeneity of the stem cell population, we here propose to approximate the ABM by a
system of partial differential equations (PDEs). The major benefit of such an approach is
its independence from the size of the system. Although this mean field approach includes
a number of simplifying assumptions compared to the ABM, it retains the key structure
of the model including the “age”-structure of stem cells. We show that the PDE model
qualitatively and quantitatively reproduces the results of the agent-based approach.

Keywords Chronic myeloid leukemia · Imatinib · Hematopoietic stem cell ·
Mathematical model · Partial differential equation · Computer simulation

1. Introduction

We previously proposed to explain hematopoietic stem cell (HSC) organization as a self-
organizing process within a heterogeneous population of individual cells interacting with
each other and with their microenvironment (Loeffler and Roeder, 2002; Glauche et al.,
2007). As an essential feature of such a concept, we proposed the interaction rules to be
dependent on the actual state of individual cells and on the signals they are receiving from
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their microenvironmental context. Particularly, the latter assumption implies that even
identical cells (i.e., cells with equal functional potential) can behave differently, depending
on the actual context they are exposed to.

To facilitate simulation analyses of this general concept, we formulated a mathemat-
ical model (Roeder and Loeffler, 2002; Roeder, 2003) within an agent-based framework
(d’Inverno and Luck, 2004). In this single cell-based approach, stem cells are assumed to
reside in two different signaling contexts, denoted as A and Ω . Individual cells are able
to change the context with a probability that depends on the actual number of cells within
these two signaling contexts and on the actual state of the particular cell. In contrast to this
dynamically regulated but stochastic transition process, the development of cells within
the two contexts is considered to follow fixed deterministic rules. Particularly, we assume
that cells within context Ω are actively proliferating, whereas cells in A are considered to
be quiescent, i.e., arrested in a nonproliferating state denoted as G0. Moreover, we assume
the cell-intrinsic variable a, which determines the affinity of a cell for residing in context
A, to develop differently depending on the actual context of the cell. Whereas a gradually
decreases for cells in Ω , it increases (up to a maximum value amax) for cells in A. Cells
with a < amin are unable to move into A (and, therefore, to regenerate a) and must remain
in Ω . They are denoted as differentiated cells.

These rules imply the existence of two “age”-structured subpopulations of HSCs with
respect to the context affinity a. However, in contrast to normal age, the context affinity
a can reversibly change within the interval [amin, amax]. Due to the particular structure of
the model, which relates residence in A to cell cycle dormancy and to regeneration of a,
context affinity a also characterizes the potential of HSCs with respect to their repopula-
tion potential and can, therefore, be interpreted as a measure of stem cell potential. For
an elaborated discussion and for technical details, we refer to Roeder and Loeffler (2002),
Roeder (2003), and Roeder et al. (2006).

Applying this model to a number of different experimental scenarios, among them
in vivo reconstitution (Roeder and Loeffler, 2002; Roeder et al., 2005), cell kinetics as-
says (Roeder and Loeffler, 2002), individual clone tracking (Roeder and Loeffler, 2002;
Roeder et al., 2007), paired daughter cell assays (Roeder and Lorenz, 2006), and directed
lineage specification in vitro (Glauche et al., 2007), we demonstrated that the proposed
concept of hematopoietic stem cell organization consistently explains a broad variety of
experimentally described phenomena.

Beyond these results, the model is also able to adequately describe clonal dynamics
in the clinical context of hematopoietic disorders. Particularly, the model has been ap-
plied to chronic myeloid leukemia (CML), a clonal hematopoietic disorder induced by a
chromosomal translocation generating the Philadelphia chromosome (Ph) and the onco-
genic BCR-ABL1 fusion gene. The translated BCR-ABL1 protein is responsible for an
expansion of the malignant clone, resulting in the displacement of normal hematopoiesis
(Mauro and Druker, 2001). Simulating leukemia expansion as well as treatment response,
we were able to demonstrate the qualitative and quantitative adequacy of our model
(Roeder et al., 2006; Horn et al., 2008). In particular, we could provide a consistent de-
scription of the BCR-ABL1 transcript dynamics (as a measure of tumor size) in CML
patients undergoing treatment with the tyrosine kinase inhibitor imatinib mesylate (IM),
which is the current front-line therapy for de novo CML.

However, the proposed agent-based model (ABM) has the disadvantage that the com-
putation time scales linearly with the maximum number of stem cells in the considered
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system. This becomes specifically relevant if simulating realistic human systems with
about 106 hematopoietic stem cells. Particularly, an adequate description of residual dis-
ease levels under (long-term) therapy with measurable proportions of less than one resid-
ual leukemia cell in 105 normal cells renders downscaling of the model system prob-
lematic. Therefore, we here suggest another mathematical representation of the proposed
concept.Because the consideration of an “age”-structured rather than a homogeneous pop-
ulation of stem cells is a central point of our stem cell concept, we apply a partial differ-
ential equation (PDE) approach, which is considered as a standard method to describe
the dynamics of structured populations (Metz and Diekmann, 1986). Using a system of
PDEs, we are able to describe the average dynamics of the system independently of its
size, i.e., the system can be simulated in constant time with regard to cell numbers. Al-
though assuming a simplified model structure to facilitate an easier numerical processing,
we show that such an approach is capable of reproducing the results obtained by the more
complex ABM and that it provides a computationally efficient alternative.

The paper is structured as follows: First, we describe the general layout of the model.
This is done for the situation of normal hematopoiesis. Thereafter, we will introduce
model extensions that allow for the consideration of malignant cells (i.e., CML genesis)
and, in a further step, for IM-affected malignant cells (i.e., IM treatment). This method-
ological part is completed by a description of the applied numerical procedures. What
follows is the presentation of numerical simulations for the above mentioned scenarios
(normal hematopoiesis, CML genesis, IM treatment) in comparison to the agent-based
approach, and finally, a discussion of the results.

2. Model description

As already described above, HSCs are considered to reside in the two signaling contexts
A and Ω . Furthermore, it is assumed that HSCs are heterogeneous with respect to their
affinity for residing within these two contexts. This heterogeneity is described by the
model variable a that characterizes the affinity of individual HSCs to reside within context
A. More precisely, cells with a large value of a exhibit a high propensity to stay within
A if they are in A or to change to A if they are in Ω . In contrast, cells with small a

preferentially tend to avoid residence in A. Cells with a < amin have completely lost their
potential to reside in A and are, therefore, not regarded as stem cells anymore. See Fig. 1
for a graphical illustration.

To describe the dynamic changes of the two a-structured cell populations, we introduce

nA(a, t) and nΩ(a, t), (1)

denoting the cell densities at affinity a and time t within A and Ω , respectively. Stem cell
numbers are obtained by integrating these functions with respect to affinity a. Because a

is considered within the interval [amin, amax] only, the integration can be restricted to this
region, i.e.,

NA(t) = NA

([amin, amax], t
) =

∫ amax

amin

nA(a, t) da, (2)
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Fig. 1 Schematic representation of the mathematical model. Stem cells reside in two different signaling
contexts, denoted as A and Ω , with proliferating cells located in Ω and quiescent cells located in A.
The cell-intrinsic variable a ∈ [amin, amax] denotes the propensity of a cell to reside in A. If a cell is
located in A, its value of a is gradually increased over time up to a maximum value amax. The increase
is dependent on a and described by velocity vA(a). In contrast, cells residing in Ω gradually decrease a,
characterized by vΩ(a). Any cell with a < amin is no longer considered as a stem but as a differentiated
cell with a limited lifespan. Transition rates between A and Ω are dependent on the position in the a-space
as depicted by the differently sized arrows. For instance, cells in Ω with a = a1 change to A at a higher
rate than cells with a = a2. Cell density functions of A and Ω are denoted as nA(a, t) and nΩ(a, t),
respectively. A detailed mathematical description of the model can be found in Section 2.

NΩ(t) = NΩ

([amin, amax], t
) =

∫ amax

amin

nΩ(a, t) da, (3)

N(t) = NA(t) + NΩ(t), (4)

with NA and NΩ describing the number of stem cells in signaling context A and Ω ,
respectively, and N denoting the total number of HSCs in the system.

2.1. Normal hematopoiesis

For the derivation of the model equations, let us firstly consider the situation of normal
hematopoiesis. Here, we assume only one cell type and no loss of stem cells despite the
normal differentiation process (i.e., the decrease of a below amin in Ω). Furthermore, let
us start with considering the situation of no transition of cells between signaling contexts
A and Ω .

Particularly for A, this means that there is no gain and no loss of cells. Hence, the cell
number in a certain affinity interval [a1, a2] at a given time point t2 is fully determined
by the cell number in the same affinity interval at a previous time point t1 and the cell in-
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and outfluxes during the considered time interval. The cell flux at point (a, t) is defined
as F(a, t) = n(a, t) · v(a), e.g., in A it is characterized by velocity vA(a), see (11). Using
this, we obtain

∫ a2

a1

nA(a, t2) da =
∫ a2

a1

nA(a, t1) da +
∫ t2

t1

nA(a1, t) · vA(a1) dt

−
∫ t2

t1

nA(a2, t) · vA(a2) dt. (5)

Let us assume that nA(a, t) and vA(a) are differentiable functions. Then using

nA(a, t2) − nA(a, t1) =
∫ t2

t1

∂

∂t
nA(a, t) dt (6)

and

nA(a2, t) · vA(a2) − nA(a1, t) · vA(a1) =
∫ a2

a1

∂

∂a

(
nA(a, t) · vA(a)

)
da (7)

in (5) gives

∫ t2

t1

∫ a2

a1

{
∂

∂t
nA(a, t) + ∂

∂a

(
nA(a, t) · vA(a)

)}
da dt = 0. (8)

Because Eq. (8) holds for arbitrary affinity intervals [a1, a2] and over any time interval
[t1, t2], one obtains the differential form of the conservation law for the number of cells
in A

∂

∂t
nA(a, t) + ∂

∂a

(
nA(a, t) · vA(a)

) = 0, (9)

which can be rewritten as

∂

∂t
nA(a, t) + vA(a) · ∂

∂a
nA(a, t) = − d

da
vA(a) · nA(a, t). (10)

Herein, vA(a) denotes the velocity of increasing a, which is given by

vA(a) =
{

ln(r) · a for a < amax,
0 for a ≥ amax

(11)

with regeneration coefficient r ≥ 1.
To account for the assumption that there is no influx into A from cells with a < amin

(cf. Fig. 1), the following boundary condition is formulated:

nA(a, t) = 0 for a < amin. (12)

The derivation of the differential equation governing the dynamics in Ω can be done
analogously bearing in mind that in this context the velocity of changing a is negative
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(a decreases with time) and that there is a source of cell production due to cell cycle
activity. To avoid a further level of model complexity, the substructure of the cell cycle,
which is explicitly considered in the ABM, is neglected in the PDE model. We model cell
proliferation by an average cell division rate τ , which depends on the reciprocal of the
average cell cycle duration τc , more precisely

τ = ln(2)

τc

. (13)

The PDE describing the cell number dynamics within Ω can now be given as

∂

∂t
nΩ(a, t) + vΩ(a) · ∂

∂a
nΩ(a, t) =

(
τ − d

da
vΩ(a)

)
· nΩ(a, t). (14)

The velocity of losing a is defined by

vΩ(a) = − ln(d) · a (15)

with differentiation coefficient d ≥ 1.
To describe the model assumption of a maximum affinity amax, with no influx into Ω

from cells with a > amax, the following boundary condition is formulated:

nΩ(a, t) = 0 for a > amax. (16)

In the following, the model equations are extended to comprise cell transitions from
A to Ω and vice versa. As assumed in our general concept of stem cell organization and
implemented in the agent-based system, each HSC has a certain probability per time step
to change its context, with α denoting the probability for a change from Ω to A and ω

for a change from A to Ω , respectively. These transition probabilities are dependent on
the actual affinity a of the cell and on the number of cells in the target signaling context.
If a cell does not change its context within a certain time step (with probabilities per time
step 1 − α and 1 − ω, respectively), it develops according to the particular rules of the
corresponding context: change its affinity a (i.e., decrease in Ω / increase in A), and if
in Ω , amplify due to cell division.

Additionally, it had been assumed in the agent-based system that transitions from Ω to
A can only be realized during G1-phase of the cell cycle (i.e., before starting the process
of DNA synthesis in the so-called S-phase), and that transitions from A to Ω (which rep-
resent the reactivation of cells from the quiescent G0-phase into active cell cycle) always
result in an immediate initiation of S-phase. As we are aiming at a simple representation,
the detailed cell cycle structure (i.e., the position of cells within the cell cycle) is neglected
in the PDE model. For that reason, the cell cycle dependent context transition from Ω to
A is modeled as a continuous process throughout the cell cycle. Technically, this is real-
ized by weighting the transition function α by a factor κ , which represents the average
proportion of the G1-phase in relation to the total cell cycle duration.

With these assumptions, the transition rates from Ω to A and vice versa are defined as

α = α(a,NA) = κ · a

amax
· fα(NA) (17)
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and

ω = ω(a,NΩ) = amin

a
· fω(NΩ). (18)

Following the formulation in the agent-based approach, the weight functions fα and
fω are modeled by a general class of sigmoid functions of the form

f (N) = 1

ν1 + ν2 · exp
(
ν3 · N

Ñ

) + ν4. (19)

The parameters ν1, ν2, ν3, and ν4 determine the shape of f , and Ñ is a scaling factor
for N . It is possible to uniquely determine ν1, ν2, ν3, and ν4 by fixing the more intuitive
values f (0), f (Ñ/2), f (Ñ), and f (∞) := limN→∞ f (N):

ν1 = (
h1h3 − h2

2

)/
(h1 + h3 − 2h2), ν2 = h1 − ν1,

ν3 = ln
(
(h3 − ν1)/ν2

)
, ν4 = f (∞)

with the dummy variables

h1 = 1/
[
f (0) − f (∞)

]
, h2 = 1/

[
f (Ñ/2) − f (∞)

]
,

h3 = 1/
[
f (Ñ) − f (∞)

]
.

Suppl. Fig. B.1 provides a graphical illustration of the transition rates and their func-
tional relationship on the HSC numbers NA and NΩ , and on the context affinity a.

Now, the complete system of PDEs describing the HSC dynamics in the situation of
normal hematopoiesis can be written as follows (function arguments are omitted for rea-
sons of brevity):

∂

∂t
nA + vA · ∂

∂a
nA =

(
− d

da
vA − ω

)
· nA + α · nΩ,

∂

∂t
nΩ + vΩ · ∂

∂a
nΩ =

(
− d

da
vΩ + τ − α

)
· nΩ + ω · nA.

(20)

2.2. Leukemia genesis

For leukemia genesis, we now consider the situation of two different types of stem cells:
normal and leukemia cells. We, therefore, introduce additional equations for leukemia
stem cells. The structure of these equations is identical to those formulated in the pre-
vious section. However, as model parameters are expected to differ between normal and
leukemia cells, we additionally introduce superscripts (“1” for normal, “2” for leukemia
cells) to refer to the different cell types:

∂

∂t
n

(1,2)
A + v

(1,2)
A · ∂

∂a
n

(1,2)
A =

(
− d

da
v

(1,2)
A − ω(1,2)

)
· n(1,2)

A + α(1,2) · n(1,2)
Ω ,

∂

∂t
n

(1,2)
Ω + v

(1,2)
Ω · ∂

∂a
n

(1,2)
Ω =

(
− d

da
v

(1,2)
Ω + τ (1,2) − α(1,2)

)
· n(1,2)

Ω + ω(1,2) · n(1,2)
A .

(21)
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The definitions of vA(a) and vΩ(a) can be intuitively extended to the situation of two
cell types, i.e., v

(j)

A (a) and v
(j)

Ω (a) for j ∈ {1,2}, bearing in mind that the velocities are
now calculated using r(j) and d(j), respectively. Similarly, τ (j) is defined by a cell type
specific average cycle time τ

(j)
c and the proportion of G1-phase of cell type j is denoted

by κ(j). Transition rates α(j) and ω(j) include cell type specific weight functions f (j)
α and

f (j)
ω , respectively.

The total number of cells in the system N is given by N(t) = NA(t) + NΩ(t). Please
note the generalized definitions of cell numbers NA and NΩ :

NA(t) =
∑

j=1,2

N
(j)

A (t) and NΩ(t) =
∑

j=1,2

N
(j)

Ω (t), (22)

with

N
(j)

A (t) =
∫ amax

amin

n
(j)

A (a, t) da and N
(j)

Ω (t) =
∫ amax

amin

n
(j)

Ω (a, t) da. (23)

2.3. Leukemia treatment

Imatinib mesylate (IM) is described as a compound that specifically targets leukemic
(e.g., BCR-ABL1 positive) cells (Buchdunger et al., 1996; Savage and Antman, 2002). It
has two major effects, proliferation inhibition (Druker et al., 1996) and cell death induc-
tion (Vigneri and Wang, 2001). Furthermore, it has been reported that IM only targets
proliferating cells (Jørgensen et al., 2006; Holtz et al., 2007).

Based on these observations, we model proliferation inhibition by an altered transition
weight function fω for leukemic cells, if they are affected by IM. Particularly, we assume
that only proliferating leukemic cells, i.e., those in Ω , are affected by IM with a constant
rate rinh. In order to distinguish IM-affected and unaffected leukemic cells, a third cell
type (superscript “3”) is introduced. The second treatment effect, namely the induced cell
death, is modeled by a constant degradation rate rdeg, which affects all leukemic cells
in Ω .

Based on these assumptions, the following set of equations is obtained:

∂

∂t
n

(1,2,3)
A + v

(1,2,3)
A

∂

∂a
n

(1,2,3)
A =

(
− d

da
v

(1,2,3)
A − ω(1,2,3)

)
n

(1,2,3)
A + α(1,2,3)n

(1,2,3)
Ω ,

∂

∂t
n

(1)
Ω + v

(1)
Ω

∂

∂a
n

(1)
Ω =

(
− d

da
v

(1)
Ω + τ (1) − α(1)

)
n

(1)
Ω + ω(1)n

(1)
A ,

∂

∂t
n

(2)
Ω + v

(2)
Ω

∂

∂a
n

(2)
Ω =

(
− d

da
v

(2)
Ω + τ (2) − α(2) − rinh − rdeg

)
n

(2)
Ω + ω(2)n

(2)
A ,

∂

∂t
n

(3)
Ω + v

(3)
Ω

∂

∂a
n

(3)
Ω =

(
− d

da
v

(3)
Ω + τ (3) − α(3) − rdeg

)
n

(3)
Ω + ω(3)n

(3)
A + rinh · n(2)

Ω .

(24)
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3. Numerics

3.1. PDE solution

Without loss of generality, the numerical procedure is described for the case of one cell
type only. This procedure, however, can be generalized in a straight forward manner to
two or more cell types, as required for the situation of CML genesis or treatment.

In case of no cellular traffic between contexts A and Ω (i.e., fα ≡ 0, fω ≡ 0), the two
PDEs specified in (20) can be analytically solved independently of each other using the
method of characteristics (LeVeque, 1990). The initial value problem (IVP) for context A

is given as

∂

∂t
nA(a, t) + vA(a) · ∂

∂a
nA(a, t) = − d

da
vA(a) · nA(a, t),

nA(a,0) = ñA(a),

(25)

with ñA(a) describing the initial distribution of cells with respect to affinity a at time
t = 0. Because only cells with a ∈ [amin, amax] are considered, we set ñA(a) = 0 ∀a /∈
[amin, amax].

The characteristic equations of problem (25), in their parametric form, are given by

dt

ds
= 1,

da

ds
= vA(a),

dnA

ds
= − d

da
vA(a) · nA(a, t). (26)

Using definition (11), the characteristics within the interval [amin, amax] can be described
as

a(t) =
{

a(0) · rt = a0 · rt for a ∈ [amin, amax),

amax for a = amax.
(27)

In order to solve the IVP, nA(a, t) is differentiated along these characteristics. For the
half-closed interval [amin, amax), one obtains from Eqs. (26)

d

dt
nA

(
a(t), t

) = − d

da
vA(a) · nA

(
a(t), t

)
, (28)

which can be solved for nA with the result:

nA(a, t) = ñA(a) · r−t . (29)

From (27), one can explicitly calculate the initial value a0 obtaining

nA(a, t) = nA

(
a · r−t ,0

) · r−t . (30)

For the initial condition specified in (25), the solution of the PDE is

nA(a, t) = ñA

(
a · r−t

) · r−t for a ∈ [amin, amax) (31)
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and the cell number in a given interval [a1, a2] with amin ≤ a1 ≤ a2 < amax can be calcu-
lated by

NA

([a1, a2], t
) =

∫ a2

a1

nA(a, t) da =
∫ a2

a1

ñA

(
a · r−t

) · r−t da. (32)

Substituting a · r−t = s and subsequently renaming s = a, this can also be written as

NA

([a1, a2], t
) =

∫ a2r−t

a1r−t

ñA(a) da. (33)

So far, the point a = amax has been excluded from the solution. To account for the
particular situation that all cells reaching amax cumulate at this point, the cell density at
amax is represented by a Dirac δ-function (Spanier and Oldham, 1987):

nA(amax, t) = C · δ(a − amax) with C =
∫ amax

amaxr−t

ñA(a) da. (34)

Using (34), it is now possible to calculate the number of cells for intervals which include
amax, and thus the cell numbers in A are generally obtained by

NA

([a1, a2], t
) =

⎧
⎨

⎩

∫ a2r−t

a1r−t ñA(a) da for a1, a2 < amax,
∫ amax

a1r−t ñA(a) da for a1 ≤ amax, a2 = amax.
(35)

For context Ω , the following IVP has to be considered:

∂

∂t
nΩ(a, t) + vΩ(a) · ∂

∂a
nΩ(a, t) =

(
τ − d

da
vΩ(a)

)
· nΩ(a, t),

nΩ(a,0) = ñΩ(a).

(36)

Similar to ñA(a) in A, ñΩ(a) describes the initial a-distribution of cells in Ω with
ñΩ(a) = 0 for all a /∈ [amin, amax]. In analogy to context A, the method of characteristics
is applied to solve the IVP. Along the characteristic curves, which are given by

a(t) = a0 · d−t , (37)

the PDE reduces to an ordinary differential equation (ODE) with the solution

nΩ(a, t) = ñΩ

(
a · dt

) · e(ln(d)+τ)·t , (38)

and using (13) the cell numbers in the interval [a1, a2] can be calculated by

NΩ

([a1, a2], t
) = 2t/τc ·

∫ a2dt

a1dt

ñΩ(a) da. (39)

Let us now turn to the more relevant situation of non-zero transitions between A and Ω .
To the best of our knowledge, it is not feasible to analytically solve the system of two cou-
pled nonlinear PDEs (20). Furthermore, due to the different “velocities” of the transport



612 Roeder et al.

processes (modeled by differentiation rate d in Ω and regeneration rate r in A), standard
numerical schemes cannot be applied. Hence, the following procedure to approximate the
solution iteratively for small time steps 
t is proposed:

We assume the functions fα(NA) and fω(NΩ) as well as κ(N) and τc(N) to be constant
during the time intervals 
t , i.e., f̂α ≡ fα(NA(t)), f̂ω ≡ fω(NΩ(t)), κ̂ ≡ κ(N(t)) and
τ̂c ≡ τc(N(t)) for all t ∈ [t, t + 
t). Introducing this assumption into reduced versions
of the model equations, which neglect the influx terms from the opposite context, one
obtains the following two uncoupled PDEs for nA and nΩ :

∂

∂t
nA(a, t) + vA(a) · ∂

∂a
nA(a, t) =

(
− d

da
vA(a) − amin

a
· f̂ω

)
· nA(a, t), (40)

∂

∂t
nΩ(a, t) + vΩ(a) · ∂

∂a
nΩ(a, t)

=
(

− d

da
vΩ(a) + ln(2)

τ̂c

− κ̂ · a

amax
· f̂α

)
· nΩ(a, t). (41)

These equations can be solved analytically, again using the method of characteristics.
To determine the cell density within A one has to solve the following ODE:

d

dt
nA

(
a(t), t

) =
(

− ln(r) − amin

a(t)
· f̂ω

)
· nA(t)

=
(

− ln(r) − amin

a0 · rt
· f̂ω

)
· nA(t), (42)

leading to

nA(t) = C0 · e
amin ·f̂ω ·r−t

a0 ·ln(r)
−ln(r)·t

. (43)

Using furthermore

nA(t = 0) = C0 · e
amin ·f̂ω
a0 ·ln(r) (44)

one finally obtains

nA

(
a(t), t

) = nA(a0,0) · e
amin ·f̂ω
a0 ·ln(r)

(r−t −1) · r−t . (45)

Similarly, one can derive the cell density within Ω , neglecting the influx from the
opposite signaling context A. Here, the corresponding ODE is given by

d

dt
nΩ

(
a(t), t

) =
(

ln(d) + ln(2)

τ̂c

− κ̂ · a(t)

amax
· f̂α

)
· nΩ(t)

=
(

ln(d) + ln(2)

τ̂c

− κ̂ · a0 · d−t

amax
· f̂α

)
· nΩ(t), (46)



An “Age”-Structured Model of Hematopoietic Stem Cell Organization 613

which has the solution

nΩ

(
a(t), t

) = nΩ(a0,0) · e κ̂·a0 ·f̂α
amax ·ln(d)

(d−t −1) · dt · 2t/τ̂c . (47)

To complete the solutions (45) and (47) by adding the influx terms, we use the fact that
the influx into one context equals the outflux of the other. Furthermore, the outfluxes can
be determined by the density differences obtained from the solutions of the uncoupled
system without any transition (25), (36) and with outfluxes only (40), (41). Using this, we
approximate the flux terms for each time step 
t by the proportions

1
(
1 − e

amin ·f̂ω
a(t)·ln(r)

·(1−r
t )
) · nA

(
a(t), t

)
(48)

and

1
(
1 − e

κ̂·a(t)·f̂α
amax ·ln(d)

·(1−d
t )
) · nΩ

(
a(t), t

)
, (49)

and we obtain the following rules for an iterative calculation of densities nA and nΩ :

nA(a, t + 
t) = nA

(
a · r−
t , t

) · e amin ·f̂ω
a·ln(r)

·(1−r
t ) · r−
t + · · ·

+ (
1 − e

κ̂·a·f̂α
amax ·ln(d)

·(1−d
t )
) · nΩ(a, t),

nΩ(a, t + 
t) = nΩ

(
a · d
t , t

) · e κ̂·a·f̂α
amax ·ln(d)

·(1−d
t ) · d
t · 2
t/τ̂c + · · ·

+ (
1 − e

amin ·f̂ω
a·ln(r)

·(1−r
t )
) · nA(a, t).

(50)

The initial densities are given as nA(a,0) = ñA(a) and nΩ(a,0) = ñΩ(a).
As mentioned above, the cells in A accumulate at the point a = amax due to the as-

sumption vA(amax) = 0. The arising density discontinuity may cause stiffness problems
when using numerical integration methods. To attenuate this problem, we redistribute the
cells which accumulate at amax during 
t , over the interval [amax · r−
t , amax]. More pre-
cisely, we consider N̂Ω ≡ NΩ(t) within the small time interval 
t . Following (18), we
furthermore consider a constant transition rate ω̂ = ω(amax, N̂Ω) within 
t . Hence, the
number of cells to be redistributed, i.e., the number of cells piling up at amax less those
cells changing to Ω during 
t , is given as

N̂ re
A = (1 − ω̂) ·

∫ amax

amax·r−
t

nA(a, t) da. (51)

After calculating nA(a, t +
t) and nΩ(a, t +
t) according to the iterative procedure
given in (50), we redistribute N̂ re

A over the interval [amax · r−
t , amax] using a triangular
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density function. That means, we apply a linear function φ(a) with its maximum value in
the interval at a = amax, its root at a = amax · r−
t and the additional property

∫ amax

amax·r−
t

φ(a) da = N̂ re
A . (52)

φ(a) can be uniquely determined and written as

φ(a) = 2N̂ re
A · r
t (a · r
t − amax)

[amax(r
t − 1)]2
. (53)

The redistribution is realized by a redefinition of the density nA at time t + 
t :

nA(a, t + 
t) :=
⎧
⎨

⎩

nA(a, t + 
t) + φ(a) for a ∈ [amax · r−
t , amax),
φ(a) for a = amax,
nA(a, t + 
t) else.

(54)

For numerical purposes, we discretize the a-space [amin, amax] using an equidistant grid
with


a = amax − amin

n − 1
, n > 1. (55)

The grid points are denoted by amin + j
a, j ∈ {0, . . . , n − 1}. Values of a are
always rounded to the closest grid point. To numerically integrate over any interval
[a1, a2], ai = amin + j
a, we use Simpson’s rule (Atkinson, 1989) for m ≥ 1 subintervals
[a1 + 2k
a,a1 + 2(k + 1)
a] with k ∈ {0, . . . ,m − 1} and a1 + 2m
a = a2. The odd
multiples of 
a, denoted by a1 + (2k + 1)
a, are used as subinterval midpoints, respec-
tively, as required in the standard procedure. It follows that for m subintervals, the number
of corresponding grid points is 2m + 1, which has the consequence that each integral has
to be calculated using an uneven number of grid points. In our numerical calculations,
we set n = 7993, resulting in grid width 
a ≈ 1.2487 · 10−4. This particular number of
grid points has proven to be a good trade-off between accuracy and calculation time. Fur-
thermore, it guarantees that all applications of Simpson’s rule in the algorithm fulfill the
requirements regarding unevenness. Finally, applying this particular partitioning, there
exists a grid point amin + j
a, which almost exactly coincides with a = amax · r−
t if
using the parameter values given in Table A.1 (see Appendix A). Due to the latter, an
additional reduction of potential numerical problems can be achieved when performing
the redistribution procedure described in (54).

Discretization of time in our implementation is 
t = 1 hour, which is the value used in
the agent-based model. A higher time resolution has only minor influences on the results.

Parameters κ and τc were estimated from the ABM by computer simulation. To do
so, we recorded the average cell cycle times τc (excluding G0) and the corresponding
G1-phase proportions κ = τG1/τc for the growth scenario described in Section 4.1. Both
parameters are now considered as functions of the total cell number N . This represents
a simplifying assumption, i.e., τc and κ do not exclusively depend on N , but also on
the distribution of cells with respect to affinity a. The dependencies are described by the
following general class of sigmoid functions:

f (N) = λ1

1 + λ2 · exp(−λ3 · N)
+ λ4. (56)
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Fig. 2 Scatterplots depicting the functional correlation between G1-phase proportion κ and total cell
number N (panel a) as well as between cell cycle duration τc and N (panel b). Both scatterplots are
derived from the agent-based model by computer simulation. The solid lines show fits of a general class
of sigmoid functions (as defined in (56)) to the respective data.

Fitting these functions to the simulated data points leads to the following parameters:
For κ(N), we obtain λ1 = 0.36, λ2 = 1000, λ3 = 8.2 · 10−5, and λ4 = 0.26; for τc(N), we
obtain λ1 = 24, λ2 = 400, λ3 = 6.6 · 10−5, and λ4 = 24. Figure 2 illustrates the functional
relationships.

To be able to perform numerical simulations, the above described iterative procedure
for calculating the cell numbers in A and Ω has been implemented in a C++ program.

3.2. Simulation

The exact parameter values used in our calculations can be found in Table A.1 in Ap-
pendix A. For comparison purposes, we use the same parameters as in the ABM, unless
indicated otherwise.

To determine the size of the tumor burden in patients, BCR-ABL1 transcript levels are
determined. To obtain these values, transcripts of the BCR-ABL1 oncogene are quantified
using quantitative polymerase chain reaction (PCR) techniques. In order to compensate
for variations in the amplification efficiency, the number of BCR-ABL1 transcripts is nor-
malized using the number of transcripts of a control gene, e.g., ABL1 (Hochhaus et al.,
2000). As a strong correlation of the proportion of BCR-ABL1 positive cells and quanti-
tative PCR measurements of BCR-ABL1 transcript levels has been reported (Branford et
al., 1999), we can use the proportion of leukemic cells in order to estimate BCR-ABL1
transcript levels in the model simulations.

In the clinical situation, BCR-ABL1 transcript levels are determined using peripheral
blood cells. However, for the sake of simplicity, our mathematical model is restricted to
the description of the dynamics of HSCs. As we assume that dynamic regulations on the
stage of more differentiated cells equally affect normal and leukemic cells, they do not
change their relative proportion, which justifies to neglect an explicit modeling of the
more mature cell stages. Instead, we use those cells that are about to leave the stem cell
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compartment, i.e., cells in Ω with a ≈ amin, to determine BCR-ABL1 levels in the model
by calculating the proportion of leukemic cells L:

L(t) = N̂
(2)
Ω (t) + N̂

(3)
Ω (t)

(N̂
(2)
Ω (t) + N̂

(3)
Ω (t)) + 2 · N̂ (1)

Ω (t)
· 100%, (57)

with

N̂
(j)

Ω (t) =
∫ a2

amin

n
(j)

Ω (a, t) da (58)

denoting the numbers of normal cells (j = 1), IM-unaffected leukemic cells (j = 2), and
IM-affected leukemic cells (j = 3) within the interval [amin, a2], respectively. Particularly,
we herein consider a2 = 0.1019, which represents approximately one tenth of the Ω con-
text (cf. Fig. 1). This particular a2-choice also coincides with grid point amin + j
a for
j = 800, which guarantees an uneven number of grid points included in the interval as re-
quired by the above described implementation of Simpson’s rule. It can be demonstrated
(data not shown) that the cells within this interval adequately represent the composition of
differentiating cells because the transition from and to A can be neglected for these cells.

4. Results

4.1. Normal hematopoiesis

To study the development from a few cells to steady-state hematopoiesis, we start with 10
uniformly distributed cells both in A and Ω , i.e., ñA and ñΩ are chosen as constants over
[amin, amax]. To check whether the averaged system behavior of the ABM can be repro-
duced by the PDE model, firstly, the parameter configuration which has shown to produce
a stable system in the single cell-based approach is considered. More precisely, we use
the parameter values given in Table A.1 and the empirically determined functional rela-
tionships τc(N) and κ(N), which are depicted in Fig. 2 by the solid lines, to numerically
solve Eqs. (20).

Using this parameter configuration, the growth phase is significantly delayed in the
PDE model compared to the ABM. Moreover, the PDE model underestimates the cell
numbers in the steady-state situation, especially for the Ω context, which points to an
insufficiently low cell division rate τ (data not shown). This deficiency can be compen-
sated by reducing the average cell cycle time τc(N) (Fig. 2b) by a constant shift. More
precisely, we reduce λ4 in Eq. (56) from 24 to 16. Using this modified function, which is
depicted in Suppl. Fig. B.2, a perfect agreement between the PDE and the average ABM
solution with respect to steady-state stem cell numbers is achieved (see Fig. 3).

However, there are still some quantitative differences in the growth phase of the sys-
tem. Most strikingly, a transient oscillatory behavior for intermediate stem cell numbers
can be observed in context Ω . This dynamical artefact can be explained by the particu-
lar choice of the nonlinear functions κ(N) and fα(NA). Specifically, the product κ · fα ,
which is used within (50) to calculate the loss or gain of cells in Ω , exhibits a chang-
ing monotonicity at about t = 1 year (see Suppl. Fig. B.3), resulting in the observed
transient decrease of cell numbers followed by a subsequent increase. Thus, the quantita-
tive discrepancy can most likely be attributed to the fact that the empirically determined
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Fig. 3 Simulation of steady-state hematopoiesis, starting from only a few stem cells, with respect to cell
numbers in contexts Ω (panel a) and A (b). The black lines depict averages of 20 ABM simulation runs,
whereas the orange lines show the corresponding numerical solutions of the PDE model. (Color figure
online.)

functional relationship κ(N) only incompletely reflects the dynamic regulation of the G1-
phase in the agent-based system. However, as this transient behavior is only observed for
the situation of a regenerating system at a stage of rather low cell numbers, which is nei-
ther relevant for the situation of leukemia genesis nor treatment, we use this parameter
configuration for all subsequent scenarios in this paper.

4.2. Leukemia genesis

In order to simulate CML genesis, we start from a normal steady-state hematopoiesis,
i.e., the initial distributions of normal cells in A and Ω , denoted by ñ

(1)
A (a) and ñ

(1)
Ω (a),

equal the cell densities nA(a, t) and nΩ(a, t) obtained at the steady-state in Section 4.1,
respectively. We assume that CML is induced by a single-cell mutation, i.e., by the in-
troduction of one malignant Ω stem cell. Without loss of generality we, therefore, set
ñ

(2)
Ω ≡ 1/(amax − amin) and ñ

(2)
A ≡ 0.

As described in Roeder et al. (2006), we assume leukemia cells to be characterized
by defective mechanisms regarding quiescence and activation into active cell cycle. More
precisely, weight function f (2)

α , which describes the transition of leukemia cells to the A

context, is modified. For the exact parameter values we refer to Table A.1. See Suppl.
Fig. B.4a for a graphical representation. Furthermore, weight function f (2)

ω , which de-
scribes the activation of quiescent leukemia cells into a proliferative state, is considered
almost constant at a high level (Suppl. Fig. B.4b). As a result, the activation of leukemia
cells is unregulated, i.e., independent of NΩ .

Using the modified τc function (as described in Section 4.1) for both normal and
leukemia cells in the PDE model, the time to a manifest leukemia is considerably longer
than observed in the agent-based approach. Moreover, the cell numbers of leukemia cells
are underestimated by the PDE model owing to an insufficient cell amplification rate (data
not shown). This can be counteracted by modifying τc of leukemia cells. To achieve an in-
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Fig. 4 Cell numbers of normal (cell type “1”) and leukemia cells (type “2”), separated by signaling
contexts Ω (above) and A (below), respectively, for the genesis of CML. The black curves represent
averages of 20 ABM simulations, whereas the orange curves depict numerical solutions of the PDE model.
(Color figure online.)

creased amplification of leukemic cells, we slightly adjusted the cell cycle function τc(N).
Particularly, we set λ1 = 19 in Eq. (56). The modified function is shown in Suppl. Fig. B.2.

As illustrated in Fig. 4, a good agreement of ABM and PDE model can be achieved
using this modification. However, the PDE model seems to slightly overestimate the num-
ber of malignant Ω cells in the long run, probably owing to the simplified representation
of the cell cycle.

4.3. Leukemia treatment

The simulation of IM treatment is initiated with cell densities ñ
(1,2)
A (a) = n

(1,2)
A (a, t̃) and

ñ
(1,2)
Ω (a) = n

(1,2)
Ω (a, t̃), where t̃ denotes the time at which the hematopoietic system con-
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Fig. 5 Cell numbers of normal (cell type “1”) and leukemia cells (types “2” and “3”), separated by signal-
ing contexts Ω (above) and A (below), respectively, for IM treatment. The black curves represent averages
of 20 ABM simulations, whereas the orange curves depict numerical solutions of the PDE model. (Color
figure online.)

sists of more than 99% leukemia stem cells. Furthermore, we let ñ
(3)
A ≡ 0 and ñ

(3)
Ω ≡ 0,

i.e., at the moment of treatment initiation there are no IM-affected cells.
Leukemia cells (cell type 2) are rendered IM-affected (cell type 3) at a constant rate

rinh. As IM is assumed to significantly reduce the proliferation of leukemic cells, we char-
acterize IM-affected cells by an altered weight function f (3)

ω , which is still independent
of cell number NΩ but reduces the transition rate ω considerably (see Suppl. Fig. B.4).
As described in Section 2.3, IM is assumed to degrade proliferative leukemia cells, which
is modeled by degradation rate rdeg. In contrast to the inhibition rate rinh, rdeg acts on all
leukemia stem cells, i.e., cell types 2 and 3.

Figure 5 and Fig. 6 show the simulation results for IM treatment with respect to cell
numbers (Fig. 5) and BCR-ABL1 transcript levels as defined in (57) (Fig. 6). The black line
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Fig. 6 BCR-ABL1 transcript levels as defined in (57) for the situation of IM treatment. The black curve
depicts the result of the single cell-based model, whereas the orange curves represent solutions of the PDE
model (dashed line: original parameter values, solid line: adjusted parameter values as given in the text).
(Color figure online.)

corresponds to the single cell-based model, letting rinh = 0.05 and rdeg = 0.028. If using
exactly the same values for the PDE model, significant quantitative differences between
both models can be observed (see dashed line in Fig. 6). Again, this difference might be
attributed to the simplified cell cycle structure assumed in the PDE model compared to the
ABM. The general qualitative behavior, i.e., the biphasic kinetics, however, is conserved.
In order to obtain also a quantitative agreement between both models, it is sufficient to
adjust the degradation and inhibition rate. Using rinh = 0.19 and rdeg = 0.06, one obtains
the results depicted by the solid orange lines, which can be characterized as a very good
quantitative agreement between both models.

5. Discussion

We demonstrated in this work that the average dynamic behavior of the previously de-
scribed ABM of hematopoietic stem cell organization can qualitatively and quantitatively
be captured by the proposed PDE model. Even though structural and computational sim-
plifications have been introduced to facilitate an easier numerical handling, all considered
scenarios, as there are normal steady-state hematopoiesis, leukemia genesis, and IM treat-
ment dynamics can be reproduced. Beyond this, the PDE model in its presented imple-
mentation also qualitatively comprises further situations, such as oscillating cell numbers
in the situation of a retarded differentiation process, induced, e.g., by small values of dif-
ferentiation coefficient d , or system exhaustion for insufficient regenerating capacities,
induced, e.g., by small values of regeneration coefficient r and/or high values of d . How-
ever, it should be noted that particularly in situations of significant differences in cell
numbers (e.g., in oscillating systems), always an individual parameter adjustment of τc

and κ is required to achieve quantitative consistency, too. The reason for this is mainly
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the simplified representation of the cell cycle dynamics in the current implementation of
the mean field approach (see also discussion below).

A major advantage of the proposed time-continuous representation is the fact that it
is able to efficiently handle systems with huge cell numbers. Therefore, in contrast to the
ABM, which requires a down-scaling of stem cell numbers to about 1/10 of the realis-
tic value in patients to guarantee feasible simulation times, the PDE model allows us to
explicitly simulate those systems. This is particularly important because PCR techniques
that are applied to monitor the tumor load in terms of the BCR-ABL1 transcript levels,
have an extremely high sensitivity (Hochhaus et al., 2000). They are able to detect about
one leukemic cell within 105 cells. To be able to describe BCR-ABL1 levels of less than
10−3%, as realistic for residual disease dynamics, ABM simulations become extremely
time-consuming. This is particularly the case if one is interested in the average behavior.
Due to the stochasticity involved in the ABM, average results require multiple simulation
runs, which again considerably increases total simulation times.

To illustrate the differences in the computational costs of the two mathematical ap-
proaches (both of which have been implemented in C++) let us consider the three scenar-
ios described in this publication. Using the numerical algorithms outlined in Section 3,
it takes approximately 13 minutes to calculate the average population behavior of a nor-
mal steady-state system regenerating from only a few cells over a timespan of 3 years
(cf. Fig. 3). In contrast, the calculation time of the ABM in the same situation is about
21 minutes, resulting in approximately 7 hours to determine the average of 20 individ-
ual simulation runs. For the situation of CML genesis over a timespan of 15 years (cf.
Fig. 4) the numerical PDE solution takes about 2.3 hours, in contrast to about 5.3 hours
for a single ABM-based simulation. That means, for the determination of an average of
20 simulation runs the PDE approach is about 46-fold faster than the ABM. Similar sav-
ings in computation times are also observed for the situation of a 5-year IM treatment (cf.
Fig. 6): 1.2 hours in the PDE model compared to 2.1 hours for a single ABM simulation.
All simulations have been performed on a LINUX platform using an Intel(R) Xeon(TM)
CPU 3.80 GHz with 64 bit architecture and 8 GB RAM. Because the PDE model rep-
resents only an approximation of the ABM, the latter should be preferred whenever its
calculational costs are not significantly higher compared to the PDE approach.

Despite its advantages, the PDE representation has also a number of limitations. Be-
cause it is a mean field approach it does naturally not allow for the description of system
immanent heterogeneity, e.g., with respect to differences in the growth kinetics of indi-
vidual stem cell clones. This makes it difficult to be applied to the situation of coexisting
(e.g., treatment-resistant) stem cell clones. Although such clonal differences might be
comprised by the introduction of new cell types (each one treated by a separate set of
PDEs), it would considerably increase the complexity and, therefore, also the numerical
management. A related problem is the fact that small subclones might not be represented
correctly in the mean field approach as PDE models are classically derived as the limit of
a large number of interacting cells. Hence, the situation of small clone phenomena is not
considered in this paper. Furthermore, the PDE model cannot account for effects caused
by stochastic fluctuations. One example is clonal extinction in the situation of CML gen-
esis. Whereas the stochastic ABM approach allows for the fact that a small clone might
disappear simply due to stochastic fluctuations, even if the clone exhibits a relative growth
advantage, the deterministic description would predict an ultimate expansion of any such
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newly induced clone. Particularly, only about 20% of induced single-cell mutations rep-
resenting the generation of the Philadelphia chromosome (see Section 4.2) lead to the
formation of a manifest leukemia in the context of the ABM. The remaining 80% of the
induced malignant clones become extinct owing to the stochastic fluctuations of clone
sizes. Therefore, to allow for a quantitative comparison of ABM and PDE model, the
ABM average simulations of CML genesis shown in this publication comprise only the
20% successfully engrafted malignant clones.

Another limitation of the proposed PDE implementation is the simplified representa-
tion of cell cycle regulation. As discussed in the results section, this does only incom-
pletely fit the results of the agent-based system and requires the individual adaptation of
the model parameters governing τc(N) and κ(N). However, as no detailed experimental
estimates for parameters underlying the dynamic cell cycle regulation are available, the
application of a simplified cell cycle regulation in the PDE model does not represent a
general constraint. Alternative simplifications of the model structure, however, will in-
evitably break the model. Stem cell heterogeneity (as represented by the a-distribution)
and proliferative regulation (modeled via the A and Ω signaling contexts) can be consid-
ered “core” concepts of the model that should not be changed.

It should be noted at this point that the representation of the stem cell model as a sys-
tem of PDEs is not the only way to enhance computational efficiency. Kim et al. (2008a)
developed a difference equation representation of the stem cell model proposed by our
group. This approach also provides an efficient method to simulate CML genesis and
treatment, while maintaining the complete structural complexity of the underlying ABM.
In another publication, Kim et al. (2008b) developed a PDE representation of our agent-
based model, which incorporates the complete structure of the underlying ABM. As a
result, the PDE model is rather expensive to solve numerically. We could show in our
work that the situation of CML genesis and treatment does not require the full com-
plexity of the ABM and can thus be handled by a computationally less demanding ap-
proach compared to the Kim model. Another approach to describe CML dynamics has
been proposed by Michor and colleagues (Michor et al., 2005; Dingli and Michor, 2006;
Michor, 2007). These authors apply systems of ordinary differential equations. While this
is a highly efficient method in terms of computation time, it neglects the heterogeneity of
the stem cell compartment, both with respect to cell cycle activity as well as with respect
to an “age”-structure of the differentiation state of HSCs. Nevertheless, if parametrized
correctly, also these models are suitable to explain the average BCR-ABL1 dynamics of
CML patients treated with IM (Roeder and Glauche, 2007). Colijn and Mackey (2005)
presented a differential delay equation model on a periodic variant of CML, where os-
cillations with respect to cell numbers can be observed at differentiated cell stages (e.g.,
leukocytes and platelets). In contrast to our work, where a general model of hematopoi-
etic stem cell organization is applied to the situation of CML, the model by Mackey and
Colijn is specifically designed for the situation of periodic CML mainly on the level of
differentiated cells.

In summary, one can say that the presented PDE approach is an appropriate alternative
to the previously proposed ABM to describe normal and malignant hematopoietic stem
cell dynamics. Although there are some quantitative discrepancies between these two
mathematical descriptions mainly due to differences in the representation of the cell cycle
dynamics, the results are structurally identical. The major advantage of the PDE approach
lies in a highly efficient determination of the average behavior in systems with huge cell
populations.
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Appendix A

Table A.1 Parameter values for cell types (1), (2), and (3), denoting normal, leukemia, and IM-
affected cells, respectively. Model parameters used in the numerical simulations are amin/amax: mini-
mum/maximum value of affinity a that characterizes the propensity of a cell to reside in signaling context
A; d : differentiation coefficient; r : regeneration coefficient; fα/fω : weight functions included in the cal-
culation of α and ω (as defined in (17) and (18)), which denote the transition rate from Ω to A and from
A to Ω , respectively; fα(.)/fω(.): function value of weight functions at given argument; ÑA/ÑΩ : scaling
factor of weight functions (see definition (19) for details); τc(N)/κ(N): cell number-dependent cell cycle
duration and G1-phase proportion, which are uniquely determined by parameters λi as given in definition
(56); rinh: inhibition rate; rdeg: degradation rate. Numbers in brackets denote alternative parameter values,
which are explained in the respective results sections. Please note that the values marked with an asterisk
are exclusively used in the treatment scenario and are set to zero during leukemia genesis

Parameter Type (1) Type (2) Type (3)

amin 0.002 0.002 0.002
amax 1.0 1.0 1.0
d 1.05 1.05 1.05
r 1.1 1.1 1.1
fα(0) 0.5 1.0 1.0
fα(ÑA/2) 0.45 0.9 0.9
fα(ÑA) 0.05 0.058 0.058
fα(∞) 0.0 0.0 0.0
ÑA 105 105 105

fω(0) 0.5 1.0 0.05
fω(ÑΩ/2) 0.3 0.99 0.049
fω(ÑΩ) 0.1 0.98 0.048
fω(∞) 0.0 0.96 0.046
ÑΩ 105 105 105

τc(N)

λ1 24 24 (19) 19
λ2 400 400 400
λ3 6.6 · 10−5 6.6 · 10−5 6.6 · 10−5

λ4 24 (16) 16 16

κ(N)

λ1 0.36 0.36 0.36
λ2 1000 1000 1000
λ3 8.2 · 10−5 8.2 · 10−5 8.2 · 10−5

λ4 0.26 0.26 0.26

rinh 0.0 0.05∗ (0.19∗) 0.0
rdeg 0.0 0.028∗ (0.06∗) 0.028 (0.06)
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Appendix B: Supplement figures

Fig. B.1 Graphical illustration of transition rates α (panel a) and ω (panel b), describing the transition
from signaling context Ω to A and from context A to Ω , respectively. The rates depend on the number of
cells in the target context, denoted as NA and NΩ , and the context affinity a. For instance, cells in Ω with
a = 0.01 change to A at a negligible rate (dotted line in panel a), whereas cells with a = 1, particularly
for low cell numbers in context A, change to A at a comparatively high rate (solid line in panel a). For
illustrating purposes, we here let κ ≡ 1.

Fig. B.2 Functional relationships of average cell cycle time τc and total cell number N used in the model.
The solid line corresponds to the empirically determined relationship obtained from the ABM by com-
puter simulation. The dashed line depicts the shifted function used for the simulation of steady-state
hematopoiesis, and the dotted line represents the compressed function used for leukemia cells.
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Fig. B.3 Product of κ and fα functions followed over time to elucidate the transient oscillatory behavior
in the PDE solution of the growth phase. Vertical lines represent the corresponding time interval.

Fig. B.4 Graphical illustration of weight functions fα and fω for cell types (1), (2), and (3).
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