
M.R.V. Chaudron (Ed.): MODELS 2008 Workshops, LNCS 5421, pp. 213–226, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Ontology-Based Assessment of Functional Redundancy
in Health Information Systems

Alfred Winter1, Alexander Strübing1, Lutz Ißler4, Birgit Brigl2,
and Reinhold Haux3

1 University of Leipzig, Institute of Medical Informatics, Statistics and Epidem., Germany
2 Dr. Birgit Brigl Krankenhaus-IT Management Beratung, Friedrichsdorf, Germany

3 Peter L. Reichertz Institute for Medical Informatics of the University of Braunschweig -
Institute for Technology and of Hannover Medical School, Germany

4 Systemantics, Aachen, Germany

Abstract. The paper introduces a formal definition of functional redundancy to
determine non-redundant health information system architectures, in order to
support information management of, in particular, hospital information systems.
We specify an ontology, which is linked to the Three-Layer Graph-Based Meta
Model (3LGM2) and based on enterprise functions and application systems of
(health) information systems. A so called functional redundancy rate (FRR) is
introduced and elucidated by an example. An algorithm for calculating non re-
dundant health information system architectures is presented. Functional redun-
dancy is a key performance indicator for the quality and efficiency of (health)
information systems. With FRR it can now be formally described and quantita-
tively analyzed. Using 3LGM2 based models of information systems, the calcu-
lation of FRR does not need further efforts.

Keywords: Health information systems, hospital information systems, informa-
tion management architectural models, functional redundancy.

1 Introduction

Information management for health information systems has become a crucial and
significant task, in particular for hospitals but also for ‘trans-institutional‘ regional
and national health care settings [1-3]. Assessing the quality and efficiency of health
care institutions’ information systems is an important field in research and practice of
medical informatics [4, 5]. However, there is still a lack of easy to understand and
likewise relevant evaluation criteria, which can be accurately defined and thus for-
mally described. Such formal descriptions provide the option to immediately derive
these criteria from architectural specifications of health information systems, and so
to make them well suitable for the practice of information management. One of those
criteria is functional redundancy ([6], pp. 170 and 233). Most information managers
may have a certain feeling for redundancy of functional support in the information
system they manage. But providing precise information regarding redundancy for
decisions concerning the information system‘s architecture and investments still needs
to be solved.

214 A. Winter et al.

The aim of our research is to introduce a formal definition of functional redun-
dancy and, to calculate a health information system’s functional redundancy rate
(FRR) (section 3) as well as to outline an algorithm for calculating non redundant
health information system architectures (section 5). Before, we need to define an
ontology [7] for describing functional redundancy in (health) information systems
(section 2). On that basis we want to support information managers to find answers to
the following questions:

• What application systems in my information systems can be shut down without
loss of functionality?

• Do I have unnecessary costs because different users in my institution use different
application systems in order to support the same enterprise function? What are the
critical enterprise functions and what application system’s usage should be prevented?

Please note that we are using the term information system in a rather comprehensive
manner. An institution’s (e.g. a hospital’s) information system, is that socio-technical
subsystem of the institution, which comprises all information processing actions as
well as the associated human or technical actors in their respective information proc-
essing role [8]. The basic model, introduced in section 2, is closely linked to the
Three-Layer Graph-Based Meta Model (3LGM2) [9] serving as a domain ontology for
the field of information systems [7].

2 An Ontological Foundation for Assessing Functional
Redundancy in Information Systems

Describing and calculating functional redundancy in an information system first of all
requires a model of the information system. To guarantee that the assessment of func-
tional redundancy can be applied to the variety of existing modelling techniques, such
a model should be based on an ontology for the description of information systems.
To our knowledge, such ontology does not exist yet. But we identified two terms that
are used in the most common modelling approaches, namely enterprise functions and
application systems. Enterprise functions can be considered a directive for human or
machine action and a duty arising from an enterprise's mission and goals. For exam-
ple, “clinical admission”, “radiotherapy”, or “care planning” may be enterprise func-
tions. Within the computer-supported part of an information system, the tools used to
support the execution of enterprise functions can be described as application systems
being installations of application software products on computers. Application sys-
tems may have a local database to store data and interfaces for communication.

Functional redundancy deals with the adequate relationship between tasks to be
done, i.e. enterprise functions, and tools to support these tasks. Using these terms we
can model this support relationship by a matrix SUP.

Let EF be a set of enterprise functions and AS a set of application systems.

{ }PEFEFEF ,...,: 1= , 0>P (1)

{ }NASASAS ,...,: 1= , 0>N (2)

 Ontology-Based Assessment of Functional Redundancy 215

The two-dimensional matrix SUP describing the relationship between tasks and
tools mentioned above is defined as

(), 1... , 1...
: p n p P n N

SUP sup
= =

= with

,

1

0

p n

p n

if function ef is suported by application system as
sup

else

⎧
= ⎨
⎩

(3)

Example (part 1)
Suppose a set of enterprise functions EF:={A,B,C,D,E,F,G} where the letters represent
enterprise functions as follows: A for “clinical admission”, B for “administrative admis-
sion (inpatients)”, C for “administrative admission (outpatients)”, D for “radiotherapy”,
E for “decision making”, F for “patient information”, and G for “care planning”. Addi-
tionally, suppose a set of application systems AS:={1,2,3,4,5,6,7,8,9} where the num-
bers represent application systems as follows: 1 for “CareMgmtSys”, 2 for “PatientAd-
ministrationSystem(ADT)”, 3 for “DepartmentalSystemPsychology”, 4 for “Depart-
mentalSystemRadiotherapy”, 5 for “KnowledgeService”, 6 for “DiabetesTrainer”, 7 for
“ClinicalPathwaySys”, 8 for “TherapyPlaner”, and 9 for “TherapyAdvisor”.

Table 1. The matrix SUP for EF and AS is illustrated in figure 1

application systems n=1,…,9
1 2 3 4 5 6 7 8 9

A 1 0 0 0 0 0 0 0 0
B 0 1 0 0 0 0 0 0 0
C 1 1 1 1 0 0 0 0 0
D 0 0 0 1 0 0 0 0 0
E 0 0 0 0 1 0 1 0 0
F 0 0 0 0 0 1 0 0 0

enterprise
functions
p=1,…,7

G 0 0 0 0 1 0 1 1 1

Fig. 1. Matrix SUP: rectangles denote enterprise functions, rounded rectangles denote applica-
tion systems, and connecting lines illustrate a “1” in the respective position of the matrix, i.e.
that a certain enterprise function is supported by a certain application system. E.g. enterprise
function E “decision making” can be supported by application system 5 “KnowledgeService”
or 7 “ClinicalPathwaySys” alternatively. The meaning of the different hatchings and the ⊕, ∅
and ⑨ -signs will be explained in section 4.3.

216 A. Winter et al.

3 A Measure for Functional Redundancy

Functional redundancy is a characteristic of information systems which should be
addressed by information management. In order to reduce complexity of the informa-
tion system it is interesting to know which application systems could be omitted
without loss of functionality, i.e. without hindering the execution of any enterprise
function. Before we define a measure for functional redundancy we want to explain,
how we can detect redundant support of enterprise functions by application systems.

3.1 Redundant Support of Enterprise Functions

For every enterprise function ef EF∈ we can easily calculate

,
1

:
N

p p n
n

isup sup
=

=∑ (4)

For every p, isupp denotes the number of application systems actually supporting
the individual enterprise function efp; we call it its individual degree of support by
application systems. Every isupp > 1 may be an indicator that some application sys-
tems are dispensable, with isupp - 1 indicating the number of possibly superfluous
systems. However, this number needs a careful investigation because some of the
apparently superfluous application systems may be necessary for other enterprise
functions. Obviously, measuring functional redundancy in a way, which is supportive
for information management, needs a measure which takes these interrelationships
into account.

Example (part 2)
Continuing part 1 of our example we can easily calculate the isupp as shown in
table 2.

Table 2. isupp

p efp isupp
1 A 1
2 B 1
3 C 4
4 D 1
5 E 2
6 F 1
7 G 4

The value of isup3 = 4 indicates that perhaps there are three superfluous application

systems supporting C (“administrative admission (outpatients)”). But detailed analysis
shows that the application systems 1 (“CareMgmtSys”), 2 (“PatientAdministration-
System(ADT)”) and 4 (“DepartmentalSystemRadiotherapy”) cannot be omitted, be-
cause they are needed for the functions A (“clinical admission”), B (“administrative
admission (inpatients)”) and D (“radiotherapy”). However, application system 3

 Ontology-Based Assessment of Functional Redundancy 217

(“DepartmentalSystemPsychology”) is a good candidate for being removed from the
information system because function C as the only function it supports is also sup-
ported by application systems 1, 2, and 4. A measure of redundancy should therefore
correctly indicate that considering the enterprise function C (“administrative admis-
sion (outpatients)”) only one application system could be omitted (namely Depart-
mentalSystemPsychology).

3.2 A Measure for Functional Redundancy for Information Management

We now want to introduce a measure for functional redundancy for information man-
agement as a key performance indicator, denoting the percentage of application sys-
tems in a given information system, which could actually be shut down and omitted
without loss of support of any enterprise function. First we have to check, whether
particular application systems can be omitted or not, given EF, AS and SUP. With the
notions introduced earlier, the challenge is to calculate a minimal subset ASmin ⊆ AS
of application systems which guarantees that all functions are supported and that there
are no superfluous application systems in use. Each set ASmin we call a “minimal func-
tionally non-redundant set of application systems”. In general, there is more than one
such set ASmin for a given information system, i. e. there is more than one way to cut
down the functional redundancy in an information system. In the real setting of the
information system of the Leipzig University Medical Center we actually found sev-
eral hundreds of minimal functionally non-redundant sets of application systems.

Let us describe any subset AS’ ⊆ AS of application systems being actually in use by

a vector
JJJJG
USE , indicating whether application systems are member of the subset AS’ or

not.

1...: () ==
JJJJG

n n NUSE use with 1 '

0
n

n

if as AS
use

else

∈⎧
= ⎨
⎩

 (5)

Hence ASmin can be described by ()min
min

1...
:

=
=

JJJJG
n n N

USE use and { }min 0,1nuse ∈ .

Given what application systems are in use, i.e. given the respective vector USE, we
can calculate the individual degree of support for all enterprise functions as well as:

*=
T

ISUP SUP USE
JJJJJG JJJJG

 with ()
1...=

= p p P
ISUP isup
JJJJJG

 (6)

As stated above, we want that despite of some application systems being not in use,
every function is supported by at least one application system. We introduce a vector

e
G

 of length P containing only “1”:

()
1...=

=
G

p p P
e e with : 1, 1...pe p P= = (7)

Now we can state the first postulation:

(P1) For every vector USE
JJJJG

 which is as a candidate for being considered as a possible
reduced set of application systems, the following constraint holds:

218 A. Winter et al.

∗ ≥
T

SUP USE e
JJJJG G

 (8)

Second we want to have as few application systems in use as possible. We introduce a

vector
G
c of length N containing only “-1”:

() 1...=
= n n N

c c
G

 with : 1, 1...nc n N= − = (9)

This leads to the second postulation:

(P2) max∗ →
T

c USE
G JJJJG

 (10)

Since SUP is a matrix of zeroes and ones, we have a pure 0-1 linear programming
problem. This problem is well known in literature as the “set covering problem” [10].
Corresponding to our statement that there will be more than one “minimal function-
ally non-redundant set of application systems” there are also different solutions for
the set covering problem. The simplest algorithm, known as “brute-force“, checks all
combinations of application systems for postulations (P1) and (P2). Of course this
would need too much computing resources for realistic information systems with
several tenths of application systems. Moreover, set covering is an NP-complete prob-
lem generally, which, roughly, means that the complexity of any algorithm will be in
the order of an exponential function of N. In section 0 we will briefly sketch an algo-
rithm which manages the situation of usual information systems quite well and we
will report on the application of this algorithm in Leipzig in section 6. So we can
assume here that we actually can find a solution for the problem. The solution is the

set minUSE of all vectors
min

min
, 1...: () ==k k n n NUSE use

JJJJG
, for which (P1) and (P2) hold, is

defined as

min minmin
1: { ,..., }= KUSE USE USE

JJJJG JJJJG
 (11)

This corresponds with the set

min min min
1: { ,..., }KAS AS AS= (12)

of minimal functionally non-redundant sets of application systems min
kAS . In the sense

of the set covering problem we could say every min
kAS covers EF. Because of (P2), all

those sets min
kAS are of the same cardinality

min: kM AS= (13)

We can now define the key performance indicator Functional Redundancy Rate
(FRR) as a measure for functional redundancy in an information system, which can be
used for information management:

:
N M

FRR
N

−= (14)

 Ontology-Based Assessment of Functional Redundancy 219

FRR can be interpreted as the percentage of application systems which could be re-
moved from the information system without loss of functionality.

Example (part 3):
Since the given information system in part 1 of the example is quite small, we can
immediately identify two minimal functionally non-redundant configurations:

min
1 {1,2,4,5,6}AS = and min

2 {1, 2, 4,6,7}AS = which correspond to the vectors
min

1 (1,1,0,1,1,1,0,0,0)=USE
JJJJG

 and
min

2 (1,1,0,1,0,1,1,0,0)=USE
JJJJG

.

For
min

1USE
JJJJG

 as one of the two minimal solutions in our example holds:

() ()
min min

1 1 1,1,3,1,1,1,1∗ = =
T

SUP USE ISUP
JJJJG JJJJJG

 (see table 3).

Table 3. Vector
min

1ISUP
JJJJJG

p efp isupp
1 A 1
2 B 1
3 C 3
4 D 1
5 E 1
6 F 1
7 G 1

Thus (P1) holds for

min

1ISUP
JJJJJG

. In the same way (P1) can be shown to hold for
min

2ISUP
JJJJJG

as well.
FRR is only dependent on N and on M, being the number of application compo-

nents and the cardinality of all minimal functionally non-redundant sets of application
systems, respectively. With N=9 and M=5, we get:

9 5
0, 44

9
FRR

−= = (15)

Hence 44% of the application systems in our example could be removed.

4 Using the Functional Redundancy Rate and Minimal
Non-redundant Sets of Application Systems to Support
Information Management

This approach may be supportive for information management in different ways:

220 A. Winter et al.

4.1 Benchmarking Information Systems

The Functional Redundancy Rate FRR may be used as a quality indicator, which
supports benchmarking of information systems. Since besides the set of application
systems the set of enterprise functions is one of the two input variables of FRR, it is
obvious, that the structure (especially the granularity of the functions modelled) as
well as the cardinality of this set will influence the result. Thus FRR depends on the
individual way of modelling the enterprise functions in an institution and FRRs of
different information systems may be incomparable. Moreover the FRRs derived by
different models of different modellers of the same information system may differ as
well. This problem can be overcome by using the same set of enterprise functions for
models of those information systems which shall be benchmarked and compared. An
appropriate set of enterprise functions for hospitals has recently been published as a
reference model in [11]. Using this as a basis for FRR calculation can make informa-
tion systems comparable with respect to their FRR. But of course complete modelling
is needed anyway.

Example (part 4)
The Functional Redundancy Rate of 44%, which has been calculated in part 3 of the
example, indicates that according to the model 44% of the application systems in this
information system – 4 out of 9 – are superfluous. This is an indicator, that – given
the model is sound and complete – information management in the respective hospital
may not have been performed very systematically.

4.2 Reducing Operational Costs

Even if a particular application system cannot be shut down and omitted, it may cause
unnecessary operational costs. Let min

kAK be a minimal set of used application sys-

tems and pisup the related individual degree of support by application systems in
min
kAK for every enterprise function

pef EF∈ . If for some p holds min 1pisup > , this

indicates, that users can use different application systems as support for the enterprise
function efp Information managers should check, whether this option is really favored;
since it may cause additional costs e.g. for customizing the different application sys-
tems the same way, providing catalogues of terms and diagnoses redundantly, addi-
tional training courses, and so on.

Example (part 5)

As can be seen in the vector
min

1ISUP
JJJJJG

in part 3 of the example, users having to perform
“administrative admission (outpatients)” (function C) have the option to choose be-
tween 3 application systems. Information management should check, whether it is
appropriate to allow employees to choose between application systems 1
“CareMgmtSys”, 2 “PatientAdministrationSystem(ADT)”, and 4 “Departmental-
SystemRadiotherapy”, if they have to admit outpatients; because this option causes
additional expenses e.g. for training. Information management could decide that only
the “PatientAdministrationSystem(ADT)” has to be used for the admission of

 Ontology-Based Assessment of Functional Redundancy 221

outpatients and could block the respective modules of the “CareMgmtSys” and “De-
partmentalSystemRadiotherapy”.

4.3 Shut Down of Superfluous Application Systems

Realizing the FRR of the information system the responsible chief information officer
(CIO) will ask what application systems actually are superfluous and can be omitted.
Using the concepts introduced before we can calculate the subset of those application
systems, which are superfluous and can be omitted anyway. Other way round those
application systems can be found, which by no means should be deleted. The calcula-
tion of the latter can simply be based on the matrix SUP (see formula (3)). An appli-
cation system asn cannot be deleted, exactly if there is an enterprise function efp such
that asn is the only application system supporting this function. Let us collect these
application systems in the set:

()(){ }, ,: | : (1) : 0n p p n p mAS as AS ef EF sup m n sup+ = ∈ ∃ ∈ = ∧ ∀ ≠ = (16)

The calculation of superfluous application systems is more difficult. Of course all
those application systems supporting no enterprise function can be omitted. Further-
more already matrix SUP provides valuable information concerning possible re-
placement of one application system by a different one. If we define two application
systems functionally equivalent if they support the same set of enterprise functions,
SUP can be used to determine those application systems which are mutually equiva-
lent.

, ,(,) :x y p x p yequal as as true p sup sup= ⇔ ∀ = (17)

Doing so every application system could be replaced by one of its equivalents. Thus
first decisions can be made, what application systems should be shut down. But there
may be more superfluous application systems, which can be found by using the

set min min min
1: { ,..., }KAS AS AS= as defined in (12) resp. calculated before. Let us

define the set

()min

1

: \−

=

=∩
K

k
k

AS AS AS (18)

of those application systems, which have been found as not needed in all minimal sets
min
kAS . Thus the application systems in AS − can be omitted anyway.

? : (\ \)AS AS AS AS− += (19)

Finally the set
?AS in (19) contains application systems which are not clearly

marked as needed or not. But we can use the equivalence relation mentioned before to

group the members of
?AS into equivalence classes. Based on this we have to decide

for every equivalence class, what member of this class should be used; the rest of the
class can be omitted.

222 A. Winter et al.

Example (part 6)
Using SUP of part 1 of the example immediately results in : {1, 2,4,6}AS + = ; these

application systems are marked with ⊕ in figure 1 and must not be omitted. As stated in

part 3 of the example, min {{1,2,3,5,6},{1, 2, 4,6,7}}AS = . Thus {3,8,9}AS − = ,

which means, that the application systems marked with ∅ in figure 1 should be omitted
anyway. The application systems marked with ⑨ in figure 1 belong to the set

? {5,7}AS = . Since both support the same set of functions, they belong to the same
equivalence class and on of them can be selected to support function E. Given Clinical-
PathwaySys is a personal favourite of the hospital’s medical director the CIO maybe
decides for ClinicalPathwaySys and consequently shuts down the KnowledgeService.
Finally the CIO can reduce the information system according to figure 2:

Fig. 2. Reduced information system (caption see figure 1)

4.4 Exploiting Potentials of Application Systems and Reducing Heterogeneity

In section 2 we defined the matrix SUP for modeling the support of enterprise func-
tions by application systems. But there may be cases, that particular application
software products could support more enterprise functions than the actual implemen-
tation, i.e. the application system, does. If a modeler adjusts the matrix SUP in a way,
that it maps an enterprise function not only to application systems, which actually
support this enterprise function, but also to those application systems, which could do
so, usually more potentially superfluous application systems may be identified.

Example (part 7)
An analysis of the application software product, underlying application system
“CareMgmtSys”, may turn out that by a proper installation this application system
could also support function “patient information”. In this case, the “DiabetesTrainer”
could be omitted, too.

5 An Algorithm for Calculating Minimal Non-redundant Sets of
Application Systems

Our approach is mainly based on the set min min min
1 K: { ,..., }USE USE USE= of minimal

vectors defining minimal non-redundant sets of application systems. But up to now

 Ontology-Based Assessment of Functional Redundancy 223

we did not elucidate how to compute this set. As mentioned before, there are algo-
rithms presented in literature, to solve the set covering problem. Far from starting a
new discussion on optimal solutions for set covering problems in general we want to
show the feasibility, i.e. the computability of the set minUSE in real settings within

acceptable time. According to our experiences there may be hundreds of application
systems and enterprise functions in those settings. Applying set covering solving
algorithms immediately would result in inacceptable computing efforts. But we have
made also the following experiences:

E1. Most of the functions will be supported by exactly one application system.

The corresponding application systems are members of AS +
.

E2. Due to incomplete models there will be more or less application systems

supporting none of the enterprise functions:
0AS .

E3. There will be more or less application systems supporting only enterprise
functions which are already supported by one of the application systems

in AS +
: AS −

.

Thus we can reduce the set of application systems to

()0: \ \ \+ −=reducedAS AS AS AS AS . This set can be further reduced by using the

equivalence relation (17) introduced in 0 and calculating the respective equivalence
classes. Based on this we collect one (arbitrary) element from each class into the set

equiAS . Now we can use
equiAS in place of AS to solve the set covering problem

by one of the algorithms well known in literature delivering
min min min

1: { ,..., }equi equi equi
LAS AS AS= [10]. Based on this calculation and according

to (17) we can calculate

()min

1

: \−

=

=
L

equi equi equi
l

l

AS AS AS∩ (20)

If we take into account that every member of −equiAS in fact is a place holder for an

equivalence class, we can also derive ?AS as defined in 0.

6 Using the Functional Redundancy Rate and Minimal
Non-redundant Sets of Application Systems at Leipzig
University Medical Center

We implemented an algorithm in JAVA solving this set covering problem, which first
reduces the set of application systems to be examined to equiAS as described. equiAS

is explored using decision trees and a backtracking algorithm [12]. Using this algo-
rithm we explored the 3LGM² model of the information system of Leipzig University
Medical Center [13]. See table 3 for the results of the assessment.

224 A. Winter et al.

Table 4. Analysis of the 3LGM² model of the information system of Leipzig University Medi-
cal Center

Functional Redundancy Rate (FRR) 25%
Number of application systems (N=|AS|) 123
Number of application systems exclusively supporting functions (AS+) 86
Number M of needed application systems 92
Number of application systems supporting only functions which are
already supported by one of the application systems in AS+ (AS–)

25

Number of equivalence classes 6
Number of application systems supporting no function (AS0) 0
Number of application systems to be examined by set covering solving
algorithms

5

No. of redundant application systems found by set covering solving
algorithms

4

Computing time (on a usual PC): < 1 sec

The resulting FRR 25%, taken for itself, indicates that a quarter of the application
systems could be removed without loss of functionality. The sets ? , ,− +AS AS AS

uncovered some interesting aspects regarding the model contents, e.g.:

• Since we modeled not only application systems of Leipzig University Medical
Center but also of some hospitals in the neighbourhood, the algorithm suggested to
omit the ADT-systems of these hospitals because the ADT-System of Leipzig Uni-
versity Medical Center would cover the functionality sufficiently.

• Two application systems supporting classification of diagnoses and procedures
have been found as being superfluous. They can be omitted since a new system has
been introduced some time before.

As shown in table 3 we have had quite small computing time; this is due to only 5
application systems to be examined by time-consuming algorithms.

7 Discussion

We have introduced the Functional Redundancy Rate (FRR) as a new key perform-
ance indicator for information systems. Even if redundancy of functions has been
discussed in medical informatics in the context of functional integrity (e.g. [6, 14]) we
could not find any formal and quantitative approach for computing a related key per-
formance indicator before. Moreover it was surprising, that the set covering problem
being discussed since many years turned out to be such a well suited formal descrip-
tion of the problem.

But the FRR and its use depends strongly on the solution of an NP-complete prob-
lem. Because of the NP-hardness, there is no way but to accept a possibly high run-
ning time of the algorithm. But this might not be a problem since a calculation time of
a weekend or two would be acceptable for gaining a saving of several thousands of
Euro. We proposed an algorithm to better manage the situation. Of course we could

 Ontology-Based Assessment of Functional Redundancy 225

not proof the computability of FRR in all settings using our algorithm. But we could
show its computability in a realistic setting giving reason to assume its usefulness in
similar settings as well.

Based on the algorithm the possible questions of information managers cited in the
introduction can be answered. The sets +AS and −AS deliver the application systems

being crucial respectively being obsolete. Additionally the Functional Redundancy
Rate (FRR) supports benchmarking between different information systems.

Besides the complexity of the underlying set covering problem there is the addi-
tional problem of collecting all enterprise functions, all application systems and all
their relationships for the calculation of FRR. Of course these efforts don’t pay for
only calculating the FRR. But if information management has a thorough description
of the information system at its disposal, perhaps by having used the 3LGM² tool [15]
the calculation of FRR does not need any further efforts.

The FRR for functional redundancy is only one key performance indicator for qual-
ity of information systems. Especially data redundancy is one more extremely rele-
vant problem. Future research has to examine this and its relationships with functional
redundancy as well and hopefully can result in considerable steps towards a sound
and complete theory of quality of information systems. Dealing with quality criteria
like functional or data redundancy makes evident, that a distinct ontological basis is
needed independently from modelling approaches used. We need a common, unified
ontology for describing information systems – not only in health care. We consider
3LGM² to be a proposal for first steps in this direction.

Acknowledgements

Thanks to Ernst Schuster. He helped us to find the proper formulation for our optimi-
zation problem. Parts of work have been supported by grants of the Deutsche For-
schungsgemeinschaft (DFG).

References

1. Kuhn, K.A., Giuse, D.A., Lapao, L., Wurst, S.H.: Expanding the scope of health informa-
tion systems - from hospitals to regional networks, to national infrastructures, and beyond.
Methods Inf. Med. 46(4), 500–502 (2007)

2. Lorenzi, N.M., Riley, R.T.: Managing technological change: organizational aspects of
health informatics. Springer, New York (2004)

3. Haux, R.: Individualization, globalization and health-about sustainable information tech-
nologies and the aim of medical informatics. Int. J. Med. Inform. 75, 795–808 (2006)

4. Ammenwerth, E., Aarts, J., Berghold, A., Beuscart-Zephir, M., Brender, J., Burkle, T., et
al.: Declaration of Innsbruck. Results from the European Science Foundation Sponsored
Workshop on Systematic Evaluation of Health Information Systems (HIS-EVAL). IMIA
Yearbook of Medical Informatics 2006. Methods Inf. Med. 45(suppl. 1), 121–123 (2006)

5. Talmon, J.: Evaluation and implementation: A call for action. IMIA Yearbook of Medical
Informatics 2006. Methods Inf. Med. 45(suppl. 1), 16–19 (2006)

6. Haux, R., Winter, A., Ammenwerth, E., Brigl, B.: Strategic Information Management in
Hospitals. Springer, New York (2004)

226 A. Winter et al.

7. Cimino, J.J., Zhu, X.: The Practical Impact of Ontologies on Biomedical Informatics.
IMIA Yearbook of Medical Informatics 2006. Methods Inf. Med. 45(suppl. 1), 124–135
(2006)

8. Winter, A.F., Ammenwerth, E., Bott, O.J., Brigl, B., Buchauer, A., Gräber, S., Grant, A.,
Häber, A., Hasselbring, W., Haux, R., Heinrich, A., Janssen, H., Kock, I., Penger, O.-S.,
Prokosch, H.-U., Terstappen, A., Winter, A.: Strategic Information Management Plans:
The Basis for systematic Information Management in Hospitals. International Journal of
Medical Informatics 64(2-3), 99–109 (2001)

9. Winter, A., Brigl, B., Wendt, T.: Modeling Hospital Information Systems (Part 1): The
Revised Three-Layer Graph-Based Meta Model 3LGM2. Methods Inf. Med. 42(5), 544–
551 (2003)

10. Karp, R.M.: Reducibility Among Combinatorial Problems. In: Miller, R.E., Thatcher, J.W.
(eds.) Complexity of Computer Computations, pp. 85–103. Plenum, New York (1972)

11. Hübner-Bloder, G., Ammenwerth, E., Brigl, B., Winter, A.: Specification of a reference
model for the domain layer of a hospital information system. Stud. Health Technol. In-
form. 116, 497–502 (2005)

12. Cormen, T.H., Leiserson, C., Rivest, R.L., Stein, C.: Introduction to Algorithms. MIT
Press, Cambridge (2001)

13. Winter, A., Brigl, B., Funkat, G., Häber, A., Heller, O., Wendt, T.: 3LGM2-Modeling to
Support Management of Health Information Systems. International Journal of Medical In-
formatics 76(2-3), 145–150 (2007)

14. van Bemmel, J.H. (ed.): Handbook of Medical Informatics. Springer, Heidelberg (1997)
15. Wendt, T., Häber, A., Brigl, B., Winter, A.: Modeling Hospital Information Systems (Part

2): Using the 3LGM2 Tool for Modeling Patient Record Management. Methods Inf.
Med. 43(3), 256–267 (2004)

	Ontology-Based Assessment of Functional Redundancy in Health Information Systems
	Introduction
	An Ontological Foundation for Assessing Functional Redundancy in Information Systems
	A Measure for Functional Redundancy
	Redundant Support of Enterprise Functions
	A Measure for Functional Redundancy for Information Management

	Using the Functional Redundancy Rate and Minimal Non-redundant Sets of Application Systems to Support Information Management
	Benchmarking Information Systems
	Reducing Operational Costs
	Shut Down of Superfluous Application Systems
	Exploiting Potentials of Application Systems and Reducing Heterogeneity

	An Algorithm for Calculating Minimal Non-redundant Sets of Application Systems
	Using the Functional Redundancy Rate and Minimal Non-redundant Sets of Application Systems at Leipzig University Medical Center
	Discussion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

