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Natural Tolerance in a Simple Immune Network
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The following basic question is studied here: In the relatively stable molecular environment of a vertebrate
body, can a dynamic idiotypic immune network develop a natural tolerance to endogenous components?
The approach is based on stability analyses and computer simulation-using a model that takes into account
the dynamics of two agents of the immune system, namely B-lymphocytes and antibodies. The study
investigates the behavior of simple immune networks in interaction with an antigen whose concentration
is held constant as a function of the symmetry properties of the connectivity matrix of the network. Current
idiotypic network models typically become unstable in the presence of this type of antigen. It is shown
that idiotypic networks of a particular connectivity show tolerance towards auto-antigen without the need
for ad hoc mechanisms that prevent an immune response. These tolerant network structures are
characterized by aperiodic behavior in the absence of auto-antigen. When coupled to an auto-antigen,
the chaotic attractor degenerates into one of several periodic ones, and at least one of them is stable. The
connectivity structure needed for this behavior allows the system to adopt particular dynamic
concentration patterns which do not lead to an unbounded immune response. Possible implications for
the understanding of autoimmune disease and its treatment are discussed.
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Coutinho, 1991; Varela ez al., 1993; Tauber, 1994).
Natural tolerance is also a contentious issue in the
classical clonal-selection view of the immune system.
In recent years, the interest in the understanding of
idiotypic networks has produced a number of models

1. Introduction

This paper is concerned with the following fundamen-
tal question: Can a dynamic idiotypic immune network
which develops in the relatively stable somatic
molecular environment develop a natural tolerance to

endogenous components? And if so, what are the
mechanisms for this tolerance? An answer to the
second question is vital for gaining insight into what
the simplest possible system with self-tolerance looks
like. Natural tolerance to endogenous components
is central to an organism-centered view of the immune
system: that is, here the immune system is seen as
being centrally responsible for a somatic identity,
and only secondarily to a defensive role (Varela &
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and significant insights (De Boer & Perelson, 1990;
Varela & Coutinho, 1991). In these models the
dynamics (of soluble and cellular fractions) and
meta-dynamics (turnover of clones and new recruit-
ment) of the network have been emphasized. The
network’s interaction with an external antigen (Ag)
has been studied with several degrees of sophistication,
but the Ag has always been considered as an infectious
agent controlled by the network dynamics (De Boer &
Hogeweg, 1989; Neumann & Weisbuch, 19924, b;
Weisbuch er al., 1993). By adding an Ag, new types of
molecules are introduced, whose dynamics have to be
considered by adding terms in the equations or by
adding new equations, if necessary.
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A question of primary importance is whether
tolerance towards auto-Ag can be achieved by the
diversity of dynamical configurations or regimes (the
dynamical repertoiret) that the model can display
when some stable auto-Ag? are considered. That is, we
study bifurcations of the system to attain bounded
response of a perturbed clone. This problem has
previously been treated only with simplified cellular
automata (Stewart & Varela, 1991). The case of
continuously present Ag, a situation corresponding
to the one found in auto-Ag and possibly in
auto-immune disease, has not been dealt with in full
dynamical detail. The exception is Detours et al.
(1994), which shows how a model taking into account
meta-dynamics evolves to an attractor where the
shape-space is divided into two zones, which are
characterized by high and low levels of antibodies, i.e.
a responsive and a tolerant zone, respectively. A
constant Ag introduced into the high-level zone of
antibodies (Ab’s) causes an unbounded immune
response, i.e. the system explodes. If the Ag is
introduced into the low-level zone, the system can
coexist with the Ag. However, this “‘tolerant” result is
obtained only with parameter values that lead to
fixed-point attractors. With parameter values such that
Ab levels fluctuate, which is likely to be the more
realistic situation, the introduction of a (constant)
auto-Ag in significant concentration always leads to an
unbounded immune response. This model is thus
unable to provide a convincing explanation of natural
tolerance.

In previous studies in which the perturbation of the
system is achieved through interaction with a
non-constant, external Ag one usually also starts from
a situation in which the unperturbed system’s
attractors are characterized by different concentration
levels of the clones (e.g. Neumann & Weisbuch,
19924, b). In this study we approach the problem the
othe. way round. Our model displays different types of
dynamics as a function of the connectivity of the
idiotypes. Our starting point will be a chaotic regime
which is characterized by the dynamical equivalence of
the clones. We show that the interaction of the system’s
constituents in this chaotic regime with a continuously
present and constant Ag causes a degeneration of the
chaotic attractor into an attractor in which the clones
are no longer equivalent. Instead of launching an

+ We use the term “*dynamical repertoire’ to refer to all dynamical
regimes that the system can have. Hence dynamical repertou'e must
not be confounded with the standard use of repertoire, repertoire
size, etc., in immunology.

1 By a stable auto-Ag we understand an Ag that can stimulate the
immune system and whose concentration is always held constant.
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unbounded immune response, the system is recipro-
cally stabilized with the constant Ag.

In this paper we focus on the interaction of a
constant Ag with simple immune systems (i.e. with few
clones) with basic network structure. The parameter
values chosen give rise to the richest behavior
compared to other regions in parameter space. For
completeness we start with the network model without
coupling with auto-Ag, and continue with a discussion
of the one-, two- and three-clone cases of the model
embedded in a somatic environment of one auto-Ag.
In spite of its simplicity, this study case displays some
very interesting flexibility that illuminates the
spontaneous origin of natural tolerance.

2. The Model

2.1. BASIC MODEL WITHOUT INTERACTIONS

The model was originally proposed by Varela et al.
(1988) and discussed in Varela & Stewart (1990) and
Stewart & Varela (1990). We have since used a slightly
modified version of this model, by the use of differently
shaped activation functions. Despite its simplicity the
model shows a rich dynamical behavior, notably the
occurrence of oscillations and chaos (Bersini, 1992;
Calenbuhr et al., 1993; Calenbuhr & Bersini, 1993;
Bersini & Calenbuhr, 1995). Similar models have been
intensively studied by De Boer et al. (1993a, b).

Our model describes the interactions between a
soluble and a cellular compartment of variable
V-regions, whose behaviors are described by the
following differential equations:

C—lZ = —kiofi — kofi + ksmat(a:)b; N

db; _

= —kabi + ksprol(a)b; + k¢

i=1,....n, ()
where f; denotes the concentration of the i-th type
(clone) of antibody, b, the population of the i-th type
(clone) of B-lymphocytes. The first term in (1) describes
the kinetics of the formation of antibody—antibody
complexes, the second term accounts for the rate of
inactivation of Ab’s and the third term describes the
production of Ab’s by B-cells (B-cell maturation). The
first term in (2) accounts for the death-rate of B-cells,
the second term for the proliferation of B-cells and the
third term represents the production of B-cells in the
bone marrow.

The antibody-antibody and antibody-B-lympho-
cyte interactions are specified by the connectivity
matrix M, whose entries m;, determine whether
(antibody or lymphocyte) species i interacts with
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01 0
0 1 0

FiG. 1. Connectivity matrix and the corresponding interaction
scheme for the three-clone open-chain case.

species j and define the function, a;, which is called the
field:

0= Z my f; (3)

The term —k,0,f; represents the formation of Ab; Ab;
complexes. Although this complex formation is
reversible, i.e. the reaction Ab; + Ab; «+> Ab;Ab,, it is
believed to have its equilibrium on the right-hand side.
We will restrict the analysis here to Boolean affinities,
such as the ones obtained empirically by ELIZA
measurements (Stewart & Varela, 1989): an entry “1”
in the connectivity matrix (CM) indicates a threshold
affinity between clones f; and f, while a “0” indicates
the absence of affinity. For example, a situation where
all members react only with their nearest neighbors
results in a CM in which all elements are zero except
for the direct-neighbor elements of the diagonal. We
will refer to that case as the open chain case (see Figs 1
and 2 for the three-clone case). Adding non-zero corner
elements to this matrix is equivalent to closing the
chain of interaction.

The functions mat and prol determine how B-cells
mature and proliferate upon activation:

mat(s;) = exp— {%} @
prol(c;) = exp— {!-IL?-/—EQ}Z ®)]

The parameter values for the results presented
here are as follows: k, = 0.0016[conc™'d"']; k; =
0.02[d"'}; ks =2.0[d™"]; ks=0.1[d""); ks = 02[d""];
ke=0.1[d']; um=80[conc’], sn=0.5 pu,=
120{conc?]; s, = 0.5.

01 1
1 0 1 =
1 1 0

FiG. 2. Connectivity matrix and the corresponding interaction
scheme for the three-clone closed-chain case.

In the one-clone case the system has one fixed point,
but oscillations appear in the two-clone case. Various
types of behavior are found for the three-clone case,

‘namely oscillations (open chain) and chaos (closed

chain). In brief, in the absence of Ag, the three-clone
case consists of six coupled ordinary differential
equations. The basic behavior of this system including
meta-dynamics has been discussed in Stewart & Varela
(1991) and Detours et al. (1994).

2.2. COUPLING WITH AN AUTO-AG

The coupling of an Ag whose concentration remains
constant is the simplest way of representing an
autologous antigen. From the mathematical point of
view it introduces the least modification at the level of
the equations. For this case (3) is replaced by

k=n j=n
g; = Z l,'.kAgk + Z mnﬁ;fw (6)
Gl

[

where Ag, denotes an auto-Ag coupled to the network
via the interaction matrix 1. In the following discussion
we will drop all indices with the understanding that
there is always only one auto-Ag present. Only in the
three-clone open-chain case do we need to specify with
which clone the Ag interacts.

A fixed auto-Ag corresponds to a situation of a
molecule that is always immediately being replenished.
One can imagine this to be the case for abundant
molecules (possibly on cells) circulating freely in the
environment. Although low concentrations of Ag are
often found in the case of auto-Ag, it is by no means
the only hypothesis to claim that their concentration is
constant, as some fluctuations might also be present.
The condition: [Ag] = constant is most likely satisfied
by molecules on tissues. Strictly speaking, however, in
the present formulation we would have a problem with
our equations since this would require the inclusion of
terms that account for reactions on two-dimensional
surfaces, i.e. flow terms and the degree of coverage of
the tissue by the Ab. We do not treat this case here but
concentrate on the simpler scenario described earlier.

Although mathematically simple, a constant Ag is
the hardest possible perturbation for the system, and
one most likely to lead to an unbounded immune
response. As will be shown in Section 3.1, with the
parameter values employed here, the critical case for
the one-clone system is when the auto-Ag concen-
tration is in the range un ~ 80 < [Ag] < 180 =~ [Ag.],
where it will explode. For the two-clone system the
critical range is smaller, since the perturbed clone
recetves additional stimulation from the unperturbed
clones raising its mean field faster into a region where
the activation functions decrease. The range of the
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critical region depends on the parameter values and the
number of clones and their interaction scheme.

2.3. COMPUTATIONAL ASPECTS

The system equations were integrated using a
fourth-order Runge-Kutta method with adaptive step
size. It is important to note that the solutions with
auto-Ag are different from the solutions without
auto-Ag as the coupling of an auto-Ag to the network
leads to a new attractor. The time series shown in the
following sections were usually obtained by initially
integrating the system equations without auto-Ag
interaction and then adding a constant Ag. We shall
refer to the integration time without Ag as the delay,
which must not be confounded with the usual meaning
of delay-terms in the context of differential equations.
In this way the different attractors in the two situations
are easily appreciated. The bifurcation analysis,
however, is based on calculations and simulations with
the auto-Ag present from the very beginning. We have
given parameter values and initial conditions in
Appendices A, B and C, enabling the reader to
reproduce the time-series plots with delay in the
different regimes, as shown in the figures.

An often-heard question alludes to the concern of
possibly reaching different attractors in the situation
with and without delay. This concern is justified only
to a certain degree. The reason being the following: in
principle, the system-has the same attractors once the
auto-Ag is present. However, if we allow for a delay,
the last values of the variables before the introduction
of Ag correspond to the initial conditions of the system
with Ag. In the two-clone and three-clone systems the
predominant behavior (for the parameters chosen) are
oscillations and aperiodic behavior. In general, one
cannot be sure whether the initial conditions of the
system in the periodic attractors cover the phase-space
sufficiently to find all attractors. In the chaotic case, the
situation is different as the system’s variables cover
larger regions in phase-space, although we cannot be
sure that they do so sufficiently. Hence, there would be

a non-negligible chance of missing some attractors by

introducing the Ag after a delay. To avoid this trap we
have based our bifurcation diagrams on simulations
with random starting conditions and have included
simulations with delay only for reasons of visual clarity
in the plots of the time series.

Nevertheless, the bifurcation diagrams still do not
contain all attractors. We have omitted some
attractors as we did not want to overload the diagrams.
First, there is always a stable node (all clones die) if the
starting concentrations of B-cells and Abs are not
sufficiently high. Second, some particular—though
very unlikely—starting conditions can give rise to

interesting periodic patterns. As these were never
found using random starting conditions and since their
basins of attraction are very small compared to the
ones reported, we have not included them either.
Third, there is always a chance of missing an attractor
with a very small basin of attraction.

2.4. GENERAL STRUCTURE OF THE PAPER

In the following, we shall study the behavior of the
system as a function of its network structure with and
without perturbation, i.e. with auto-Ag interaction
and without it. We will discuss the results obtained for
the one-, two-, and three-clone case and discuss the
stability diagrams of these systems as a function of the
control parameter [Ag]. The stability diagrams show
the mean concentration of the perturbed clone as a
function of [Ag]. In this way the impact of the Ag on
the actual dynamics of the system can be appreciated.

As we shall see, there is a certain range of [Ag] in
which the one-clone and two-clone systems have an
unbounded immune response. For the one-clone
system this unstable regime occurs in a large window
of the parameter [Ag]. For the two-clone and
three-clone systems, however, we shall see that this
critical zone leading to instability lies, roughly
speaking in the range u. < [Ag]<u,. The basic
question that we address is whether the immune system
can cut the response towards a constant Ag solely due
to its dynamic repertoire without the need for explicit
mechanisms. In the three-clone closed chain case, in
which aperiodic behavior is found, the system has a
means to access an attractor in which the interaction
with auto-Ag does not lead to an unbounded immune
response.

3. Results

3.1. THE ONE-CLONE CASE

A one-clone system is much less artificial than it may
appear at first glance. In the classical Burnetian view
of clonal selection theory it is assumed that the immune
system is driven by external antigens, and that
reactions between antibodies of different types are
absent. From that point of view the one-clone case
discussed here is merely the response one would expect
from any clone being excited by a constant Ag. From
the point of view of second-generation immune
networks (Varela & Coutinho, 1991) the one-clone
case corresponds to a clone isolated from the rest of the

(—=

F1G. 3. Interaction of the one-clone system with Ag.
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network, with some potential implications for
autoimmunity.

- For the one-clone case the system is described just
by two equations:

g_{ = —kiof — ko f + ksmat(o)b %)
db
q = b+ ksprol(a)b + ks ®)

and the field o(?) reduces in this case to a parameter,
i.e. ¢ = [Ag]. The position of the steady states depend
on o, and are:

fo= [k;mat(o)(—ks)]
" {[—ks + ksprol(o)][kic + k]

—k,
[—k« + ksprol(o)]

If no auto-Ag is present the steady state is at
(f°, 5% = (0.0, k¢/ks). Linearization of (7) and (8)
about the steady states gives the Jacobian

| ki~ ko k;mat(a)
A= { 0 —ke + ksprol(o‘):| ©)

b=

For the solution of the characteristic equation
corresponding to (9) one finds the following results.
The trace Tr=(—k — k.o —ks+ ksprol(e)) is
always negative. The determinant det = (—k, — k.0)
(—k4 + ksprol(e)) is negative if ks> ksprol(o),
implying stability. Hence, for ¢ <79.14 and
o> 18196 the system has two real negative
eigenvalues, i.e. stable nodes. For 79.14 < ¢ < 181.96
one positive and one negative eigenvalue are found,
her :e a saddle point.

The introduction of a fixed antigen provokes the
production of Ab’s and the proliferation of B-cells. In
the unstable region, the system’s behavior is dominated
by the third term-in (7) due to the exponential growth
of the maturation function.

In a certain range of the parameter [Ag] the system
is always stable. That means that a small variation of
the concentration of the auto-Ag will be damped out.
In these regions the system can couple naturally with
an auto-Ag. By increasing [Ag] into the unstable
region, the system will explode. Nevertheless, the
system can cope with a large range of Ag-concen-
trations without becoming unstable.

The solution for the fixed auto-Ag also gives us some
clues for other cases. The most important of them is
where a fixed amount of external Ag that has no
intrinsic dynamics and that can be removed by
interaction with Abs is injected into the system. We
expect that the system always returns to its fixed point

o

FIG. 4. Interaction of the two-clone system with Ag.

O

in the stable regions. Moreover, in the unstable region
the system will launch a strong immune response that
removes the Ag. As soon as the injected quantity has
been sufficiently reduced, the system will return to its
stable regime.

3.2. THE TWO-CLONE CASE

Without auto-Ag the two clones oscillate out of
phase and have the same amplitude [Fig. 5(a)}. With
low [Ag] an asymmetry is introduced such that the
perturbed clone oscillates in a higher concentration
range and the other one in a reduced range [Fig. 5(b)].
When increasing the auto-Ag concentration the
asymmetry becomes more pronounced: the perturbed
clone oscillates at ever larger amplitudes and the other
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F1G. 5. (a) Time series of the first clone of the unperturbed
two-clone system, i.e. without Ag. (b) Time series of the second clone
of the perturbed two-clone system. The Ag is introduced after 500
days, [Ag] = 50.
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Fic. 6. Bifurcation diagram of the two-clone system. The mean
concentration of the perturbed clone is plotted as a function of
the Ag concentration. f.p. = fixed point. The dotted line denotes
stable branches. The following types of behavior were found: with
Ag 0 <[Ag] € 4t = 72.42; oscillations, 4 =72.42 < [Ag] < ;=
77.28, stable focus, 4:=77.28 <[Ag] < 43 = 79.1, stable node;
A x79.1 < [Ag] < i = 12491, saddle. Up to this value of [Ag]
arbitrary starting conditions in thie range 0-300 for the Ab’sand 0-60
for the B-lymphocytes can be used. For Lk = 12491 < [Ag] < 4s=
136.97, there is coexistence of a saddle and a stable periodic regime.
The vertical bars denote the approximate boundaries of the critical
zone. The saddle can be found using starting conditions f; = 5.528,
f2=276.178, by = 16.578, b: = 25.371; the limit cycle can be found
using starting conditions fi =43.827, f:=37.529, b = 20.610,
b, = 59.05. Note that different starting conditions can lead to slightly
different values of the bifurcation points. For 136.97 < [Ag]
arbitrary starting conditions in the range 0-300 for the Ab’sand 0—60
for the B-lymphocytes can be used. For 45 = 136.97 < [Ag] < As=
140.7, limit cycle oscillations; 4s = 140.7 < [Ag] < 4, = 154.75,
stable focus, A; = 154.75 < [Ag], stable node. Simulations were
carried out in all cases with Ag present from the very beginning.

one at smaller ones. At [Ag] = 72.42 a bifurcation
point is reached and the oscillatory regime is
transformed into a stable focus (Fig. 6). Again, the
perturbed clone attains a fixed concentration at a
higher level than the unperturbed one. At[Ag] = 77.28
the stable focus becomes a stable node until eventually,
at pun ~ [Ag] = 79.1, a saddle is reached where the
perturbed clone grows unbounded and the unper-
turbed one dies off. Increasing [Ag] further, one
reaches a region with two coexisting regimes in phase
space: a saddle and a stable limit cycle. The oscillatory
regime is characterized by non-overlapping concen-
tration levels of the two clones, with the perturbed
clone oscillating at higher levels than the unperturbed
clone. An increase in Ag levels leads to a reduction of
the amplitudes of oscillation until eventually a stable
focus is reached which turns into a stable node with
even higher [Ag] levels. The concentrations reached by
the clones converge toward zero.

3.3. THE CLOSED-CHAIN THREE-CLONE CASE

The three clone case is interesting because it
represents the simplest network with more than one

interaction possibility. We begin with the three-clone
closed-chain case (3-ccc case), as illustrated in Fig. 7.
In the absence of auto-Ag the system displays
aperiodic behavior [Fig. 8(a)]. We refer to this regime
as type 0. Observing the dynamics of simulations one
gets the impression the system is continuously trying to
form pairs of clones that synchronize (as is the case
in the threeclone open-chain case, see below).
However, as soon as a new pair is forming they break
up and a new attempt is made to form a pair with the
other clone. The clones participating in the pair
formation are selected randomly and the attempts
to form a pair occur irregularly. From a dynamical
point of view, all the clones are equivalent or
interchangeable, a consequence of closing the chain of
interaction. The phenomenon just described is
reminiscent of frustration phenomena found in
neural networks (Atiya & Baldi, 1989; Marcus et al.,
1991) and spin glasses (Toulouse, 1977) and was
therefore named “frustration induced chaos”. A
complete description appears in Bersini & Calenbuhr
(1995).

It can be shown that this type of chaos can be
reached via an intermittent route by changing the
parameter k; in (1) (Calenbuhr & Bersini, 1993). The
laminary phases of the intermittent regime are
characterized by high-level, large-amplitude oscil-
lations of a pair of clones and low-level, small-ampli-
tude oscillations of the other clone. All clones can
participate in these high-level and low-level oscil-
lations. The amplitudes of the clone oscillating in the
low-concentration range increase as a function of time
until the concentration range of the other two clones
arereached. At this point the chaotic phase starts again
until, after a certain while, another clone starts
oscillating in the low concentration range. For even
smaller values of k; the system displays oscillations that
resemble the laminary phase type. They are different in
that the amplitude of the clone oscillating in the
low-level range remains constant.

We start our discussion of the impact of an auto-Ag
on the 3-ccc case for parameter values that lead
to chaotic type-0 behavior. This will be essential for
the further discussion of the impact of an auto-Ag
on the system in the intermittent and oscillatory
regime.

Ag 2 3
\_/

FiG. 7. Interaction of clone 2 with Ag in the 3-ccc case.
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Ag (=70) is introduced at ¢ = 500 days.

The introduction of an auto-Ag leads to several
changes in the behavior of the system. We first give a
brief overview of the different types of behavior found;
more detailed analyses and exact parameter values for
which bifurcations occur are given in Appendix A. For

a critical value onwards, the chaotic attractor
degenerates into a periodic attractor. Roughly
speaking, for two values, [Ag] < unand [Ag] > p,, the
system is always stable. That means that the presence
of Ag neither leads to an unbounded increase of
one of the clones nor is any of them totally suppressed.
For un < [Ag] < , (the critical region) the system has
one stable regime (bounded response) and one
unstable regime (unbounded response). In the
following we shall discuss the mechanisms that enable
the system to display a bounded response in the
presence of auto-Ag.

The system undergoes several bifurcations and
changes of stability as a function of the auto-Ag

small values of [Ag] the chaotic regime persists. From |
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FiG. 8. (a) Time series of the second clone in the unperturbed 3-ccc case. (b) Time series of the perturbed 3-ccc case. The Ag is introduced
at t = 1000 days. [Ag] = 10. (c) Time series of 3-ccc case. The [Ag] = 40 is introduced at £ = 1000 days. (d) Time series of the 3-ccc case. The

concentration [Fig. 9(a); Appendix A}, and has three
dynamical regimes that coexist in some regions of
parameter space of the control parameter [Ag]. These
regimes are referred to as branch I, branch II and
branch III, respectively. Each of these regimes is
distinguished by a characteristic oscillation which we
refer to as type I, type II and type III, respectively.
Moreover, on branch III we also find fixed points that
replace the type-III oscillation when increasing the
control parameter. Appendix A contains a detailed
description of this intricate bifurcation diagram.

We now take a closer look at the system’s behavior
near the critical range. Type-I oscillations show
the following behavior [refer to Fig. 8(b) (the
corresponding fixed points have the same concen-
tration patterns)]: the perturbed clone oscillates with
low amplitude, while the other two oscillate with a high
amplitude. The two non-perturbed clones always have
the same concentration and oscillate out of phase with
the perturbed one. Further, d¢{[Ab])/<(d[Ag]) <O.
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FiG. 9. (a) Bifurcation diagram of the 3-ccc case. The mean
concentration of the perturbed clone is plotted as a function of the
Ag-concentration. The dotted line denotes stable branches.
f.p. = fixed point. The following types of behavior were found: with
0 < [Ag] < 41 = 6.69, chaotic attractor; A <[Ag] < 4: = 36.441,
type-1 oscillations; 4, = 36.441 < [Ag] < 4: = 45.215, birhythmicity
(type-I and type-II oscillations); 4: = 45.215 < [Ag] < 4s = 69.98,
type-1 oscillations; 4 = 69.98 < [Ag] < 4s = 70.73, birhythmicity
(type-1 and type-IIl oscillations); 4s = 70.73 < [Ag] < 4 = 78.66,
coexistence of branch I (type-I oscillations) and branch III (stable
focus); A = 78.66 < [Ag] < 4y = 79.2, coexistence of branch [
(type-I oscillations) and branch III (stable node); 47 =79.2<
[Ag] < 4s = 123.48, coexistence of branch I (type-I oscillations) and
branch III (saddle). The vertical bars denote the approximate
boundaries of the critical zome. A; = 123.48 < [Ag] < A; = 149.0
corresponds to coexistence of branch I (type-1 oscillations) and
branch III (stable focus); 49 = 149.0 < [Ag], coexistence of branch
I (type-I oscillations) and branch III (stable node). For a detailed
description of the types of behavior found, see Appendix A.
(b) Proportion of simulations leading to branch III. We have run
10 x 200 simulations with 2000 random starting conditions.

The laminary phase of the unperturbed 3-ccc system is
in many respects similar to the type-I regime.

The type-III oscillations are characterized by
large-amplitude oscillations of the perturbed clone and
low-amplitude osciliations of the unperturbed clones.
The perturbed clone oscillates out of phase with the
perturbed clones (Fig. 8(d)]. Branches I and III thus
have the inverse concentration patterns. While the

. perturbed clone on branch I has a low concentration,

the perturbed clone on branch III has a high
concentration. Branch I remains stable, while branch
111 becomes unstable in the critical zone. The coupling
of an Ag to the unperturbed system leads the aperiodic
attractor to degenerate into a periodic one. The system
has at least two choices: a stable or an unstable regime.

Different starting conditions lead to one of the two
possible branches. In the beginning of the critical zone,
i.e. for [Ag] = un. we find that about one quarter of all
starting conditions gives rise to trajectories on branch
[II. The basin of attraction becomes smaller with
increasing [Ag]. as seen from the results in Fig. 9(b). We
have tried to characterize the starting conditions
leading to either one of the branches and have found
none. [t appears that there are no preferred starting
conditions leading to either one regime. This is
reminiscent of riddled basins of attraction (Alexander
et al., 1992; Sommerer & Ott, 1993; Ott et al., 1993).
It is beyond the scope of this article to investigate this
aspect further. If the arbitrariness with which either of
the attractors can be reached should turn out to be a
more general phenomenon, i.e. if it should be
characteristic of larger systems, then it is a question
that should be investigated more seriously for its
medical implications.

3.4. THE OPEN-CHAIN THREE-CLONE CASE

In the absence of any antigen clones | and 3 always
oscillate in phase and have the same concentration,
while clone 2 oscillates in phase opposition. The
amplitude of clone 2 is twice as large as that of clone
1 or 3 (Fig. 10). ‘

The difference with the perturbed three-clone
closed-chain case is that we have to distinguish two
cases. The auto-Ag can perturb one of the clones at the
end of the chain, i.e. clone | or 3, or (i) it can perturb
clone 2. We discuss the second case first.

Introduction of an auto-Ag leads to an oscillatory
regime which is similar in behavior to type-III
oscillations in that the perturbed clone oscillates out of
phase with clones ! and 3 and with higher amplitude
(Fig. 12). We refer to this type of behavior as type-IV
oscillations. Appendix B contains a more detailed
description of the behavior, which is shown in Fig. 13.
Suffice to mention that for [Ag'] < um and [Ag'] > pp,
the system is always stable. That means that the
presence of Ag neither leads to an unbounded increase
of one of the clones nor are any of them totally
suppressed. At [Ag]=78.84 (ie. [Ag]= i) a
bifurcation occurs, which transforms the stable node
into a saddle characterized by an unbounded increase
of the perturbed clone and death of the unperturbed
ones. At [Ag] = 116.98 (i.e. [Ag] ~ ;) a bifurcation
occurs, which transforms the saddle point into a stable
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FiG. 10. Time series of the unperturbed 3-coc system. (a) Clone 1;
(b) clone 2.

focus, leading to a bounded response of the perturbed
clone again.

We now turn to the perturbation of either one of the
end clones (clone 1 to fix ideas).

In what we have discussed so far, there has always
been symmetry between clones 1 and 3. In the present
configuration, this is no longer the case. For most
values of the parameter [Ag], the three clones have
different concentration levels. The results found are
shown in Fig. 15 and are described in Appendix C. For
this case we find a bifurcation that transforms a stable
node into a saddle at the beginning of the critical range,
which leads to an unbounded immune response of the
perturbed clone, while the two others die. At the end

0-0-C

FIG. 11. Coupling of the central clone in the 3-coc case.

of the critical zone, the system has several coexisting
regimes, among them stable ones.

The essence of the results just described are
summarized in Table 1. The study of three basic cases
hasillustrated how the system can avoid an unbounded
immune response in a physiological concentration
range provided the system operates in or near a chaotic
regime, in which case the system does not need an ad
hoc mechanism to stop an explosive immune response.

4. Discussion

4.1. SCALING AND DYNAMICAL CONTROL

The idiotypic network models studied to date do not
have explicit mechanisms that stop short an immune
response in the presence of a constant Ag. The
fundamental question that we addressed here is
different: namely, whether it is possible to have a
coherent co-existence between the network and a
constant somatic auto-Ag solely on the basis of the
dynamic repertoire of the system. We have seen that at
least in the three-clone closed-chain case, the system
has a means for coping with this type of Ag. One
mechanism to avoid an unbounded response-is the
degeneration of a chaotic attractor into one of several
possible periodic attractors, one of which is tolerant.
In general, the 3-ccc system can avoid an unbounded
response by adopting particular concentration pat-
terns that characterize attractors that are not accessible
to systems with less connected structures of the
connectivity matrix.

The interpretation of this result is related to the
impression that in the absence of Ag the system is
continuously trying to form pairs of clones that
synchronize in high level oscillations, the third clone
being relegated to low level oscillations. The amplitude
of the “low” clone increases in time until the
concentration range of the “high” clones is reached
and the system enters a chaotic phase. Over a long time
period, the three clones are dynamically equivalent. It
seems the introduction of an auto-Ag breaks this
three-way symmetry. In one of the attractors, the
stable one, the perturbed clone is designated for the
role of low-level oscillations. In the other attractor, the
unstable one, the perturbed clone shows high-level
concentrations. '

In order to better understand why one of the possible
concentration patterns leads to a stable situation, let us
look again at the one-clone case. The stability analysis
has shown that there is a range of [Ag] for which the
system has a positive and a negative eigenvalue. This
result can be generalized. It does not matter whether
the field received by one clone is generated by one or,
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Fi1G. 12. Time series of the perturbed 3-coc system. The Ag (=40) is introduced at ¢ = 500 days.

many Ags or by Ag+ Abs. Only the field
received matters. We have already noted that in the
one-clone case the hardest perturbation is met when
a constant auto-Ag is in the concentration range
tn = [Ag] < [Ag.]. Since in this case the perturbed
clone does not receive additional stimulation from
other clones, which could raise its mean field to [Ag],
it will explode. We may, therefore, predict that
tolerance will be easier to achieve the closer the
auto-Ag concentration is to [Ag.}, since the additional
field required is correspondingly less. This qualitative

___expectation is confirmed by the results presented here,

since we may observe that unbounded immune
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Fic. 13. Bifurcation diagram of the 3-coc system, auto-Ag
coupled to the middle clone 2. The mean concentration of the
perturbed clone is plotied as a function of the Ag concentration.
fp. = fixed point. The dotted line denotes stable branches. The
following types of behavior were found: with 0 < [Ag] < 4 = 72.35,
type-IV oscillations; 4 = 72.35 < [Ag] < 42 = 77.23, stable fo-
cus; A2 =77.23 <[Ag] < 4; =78.84, stable node; 4;=78.84<
[Ag] < A, saddle-point. The vertical bars denote the approximate
boundaries of the critical zone. For A = 11698 < [Ag] < 4s=
155.75, stable focus; is = 155.75 < [Ag], stable node. For a detailed
description of the types of behavior found, see Appendix B.

responses always occur in the auto-Ag range
immediately above .

Since the three-clone closed-chain configuration
reliably provides a strong additional field for the
perturbed clone from the two high-level clones. the
conditions are met for stabilizing the system in a
tolerant mode even for auto-Ag concentrations in the
critical range. Hence, the present study gives us some
clues as to how the dynamic repertoire of a small
immune system can provide similar behavior as that of
natural immune networks in the presence of a diversity
of somatic auto-Ag which are relatively constant in
concentration. This result is particularly suggestive in
the light of the recent reports of both narrow-band and
broad-band fluctuations in natural populations and
antibodies in mice and men (Lundqvist et al., 1989;
Varela etal., 1991). Whether these natural fluctuations
are a reflection of natural tolerance remains to be
determined.

The next logical step is to simulate higher
dimensional systems and draw conclusion about how
well this behavior scales up with size. One could
attribute the behavior of the 3-ccc system solely to the
network architecture ostensibly responsible for the
various dynamical regimes that underlie the co-exist-
ence with constant auto-Ag. However, a detailed study
of the dynamics as a function of the type of
connectivity matrix for much larger systems (up to ca.
50 clones) has shown that the system can also display
many different chaotic regimes, among them intermit-
tent ones. Whether chaotic or (through parameter
dependence) related intermittent and oscillatory

O0=0

e——{ 1)
—/

Fi1G. 14. Interaction of clone I with Ag in the 3-coc case.
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FiG. 15. Bifurcation diagram of the 3-coc system with the Ag
acting upon clone 1 (perturbation leads to similar behaviour of
clone 3). The mean concentration of the perturbed clone is plotted
as a function of the Ag concentration. f.p. = fixed point. The
dotted line denotes stable branches. The following types of behavior
were found: with 0 <[Ag] <A =72.52, type-V oscillations;
iy = 72.52 < [Ag) < iz = 77.02, stable focus; 4, = 77.02 < [Ag] <
iy = 79.1, stable node; 4y = 79.1 € [Ag] < A = 114.4], saddle. The
vertical bars denote the approximate boundaries of the critical zone.
For A = 114.41 < [Ag] < 4s = 127.10, coexistence of a saddle and
type-V oscillations; is = 114.41 > [Ag], type-V oscillations. For a
detailed description of the types of behavior found, see Appendix C.

Ab concentration

regimes that the model can generate might behave in
the same way as in the 3-ccc case, is a question that
cannot be answered yet. We are currently conducting
a systematic study of this question and found that
at least intermittent regimes of larger systems can
also coexist with auto-Ag (Calenbuhr et al., in
preparation).

The biggest obstacle to the study of higher
dimensional systems is our current ignorance of
realistic connectivity matrices beyond a few empirical
studies (Stewart & Varela, 1989; B-Rao & Stewart,
unpublished). What is needed is some sort of building
block whose behavior is well understood and which
puts us in a position to study higher dimensional
systems in more economic ways than just integrating
2n-equations with n large. The 3-ccc case may turn out
to relate to those building blocks of the connectivity

TaBLE 1
Summary of results

These are the basic types of behavior for the three different type of
networks studied:

o Two-clone case without Ag: oscillations;

o Two-clone case with Ag: oscillations; system becomes unstable for
certain concentration ranges of the Ag;

o Three-clone open-chain case without Ag: oscillations;

o Three-clone open-chain case with Ag: oscillations; system becomes
unstable for certain concentration ranges of the Ag;

o Three-clone closed-chain case without Ag: chaos;

o Three-clone closed-chain case with Ag: chaotic attractor
degenerates into several dynamic regimes of lower complexity, at
least one of which is always stable in the presence of auto-Ag.

matrix which allow us to predict, at least on empirical
grounds, the qualitative behavior of larger systems.

The degeneration of the chaotic attractor into a
periodic one upon coupling the system to an Ag is
reminiscent of several attempts of controlling chaos. A
chaotic attractor can be considered a collection of a
large number of unstable periodic attractors. Con-
trolling chaos usually involves the selection of one of
these unstable periodic attractors and its stabilization.
The type of chaos displayed by the present system has
been named frustration induced chaos due to the
similarity with frustration induced changes of behavior
in neural networks (Bersini & Calenbuhr, 1995).
Frustration induced chaos is distinguished by the
dynamical equivalence of each of the three variables on
both time scales (B-cell and Ab timescale, respectively).
Interesting applications of the control of frustration
induced chaos will be reported elsewhere (Calenbuhr
& Bersini, in preparation).

4.2, TOLERANCE AND AUTOIMMUNITY

We have seen that the 3-ccc case leads to at least two
major attractors in the presence of auto-Ag: a stable
one and an unstable one. Can we draw from these
results any useful insight with respect to the etiologies
of autoimmune disease and their treatment?

According to our network interpretation, auto-
immune disease could be due to defects in the network
structure (Varela & Coutinho, 1991). In particular,
intravenous injection of pooled Ig (Ivig) is a successful
clinical practice which could be explained by a
camouflage- or fill out-effect of the network defects
(Kaveri et al., 1991). Further, in a case study of a
patient suffering from Hashimoto’s thyroiditis we have
shown the changes in network dynamics before and
after Ivlg treatment (Dietrich er al., 1993). Auto-
immune patients often display remission of symptoms
after Ivlg treatment, but the symptoms recur after a
couple of months.

Our simple model shows that it might be possible to
move the system—in the multi-stable regime—from
one attractor to another by applying an appropriate
perturbation. This would also take us closer to an
understanding of the mechanisms of some auto-
immune diseases in terms of coexisting dynamic
regimes. Clearly the 3-ccc case is far too simple, and
provides only a suggestive possibility for larger
dimensional systems moving to and from unstable and
stable branches under perturbations. It may be
doubted whether the unstable branch has any direct
relevance for the understanding of auto-immune
disease since a system does not remain in an unstable
attractor for long. However, a trajectory on the
unstable attractor can be part of a heteroclinic orbit
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and end up in another stable attractor, which
corresponds in our case either to a large production of
Abs or to a large production of Abs that could be
removed by a mechanism that is not yet included in our
model. The shift could, in principle, be from the stable
to the unstable regime or, alternatively, the system is
being shifted from an attractor corresponding to a
large Ab-production to the stable attractor. After the
application of the perturbation, the system will go
along on that attractor. Recall that coexisting
attractors cannot only be reached by applying a
perturbation but also by starting from different initial
conditions. If the initial conditions, i.e. the concen-
trations of the Abs produced in the bone marrow,
correspond to those that lead to the attractor
responsible for an autoimmune state, then we would
expect that after a while the attractor that has been
reached through the application of a perturbation will
again be replaced by the autoimmune one.

The appealing simplicity of the model in its present
version and the fact that many different dynamic
regimes can be easily reached by changing symmetry
properties of the interaction architecture gives us some
hope that tolerance may be achieved using the dynamic
repertoire inherent to the model.

4.3. PREVIOUS MODELS

How do the results of this study compare to other
models? In the 3-ccc case, all Abs are equivalent. We
observe the same behavior irrespective of which clone
is perturbed by the Ag. As we have seen, this type of
response is only possible in this particular situation.
The problem of model network’s behavior towards
continuously present Ag has also been investigated by
Detours et al. (1994). Their model differs in some
respects from the one discussed here, since it focuses on
morphogenetic effects in shape-space including
meta-dynamics, i.e. an updated variable list of clones
occurs on a slower timescale than that of the dynamics.
The model has a bounded dynamics if and only if the
parameters governing the system dynamics are chosen
in such a way that one has a fixed point. In this
situation the shape space is partitioned, as a result of
the system’s development, into two zones: one high
zone in which the clones are present in relatively low
concentrations and where they are under a high field
and another low zone in which the clones are present
in high concentrations and are under a low field. In our
case, we also find high and low level zones—albeit
oscillating ones—but these regimes emerge in
continuous interaction with a constant Ag, while
Detours er al. consider an autonomous dynamic
followed by perturbation from a constant Ag when
both zones are already constituted.

We have already suggested that it is the equivalence
of clones in the chaotic regime that endows the system
with the capacity to tolerate auto-Ag. The closed-chain
situation, however, is inconsistent with Detours et al.,
since one needs multiple epitopes for a closed chain,
while only complementary shapes are admitted in their
model. We conclude that the biologically realistic case
with multiple epitopes is an important consideration to
take into account in immune network models.

To our knowledge, the present study and the paper
by Detours et al. are the only ones that deal with
continuously present auto-Ag. The interaction of
immune system models with an external, variable Ag
as in classical immune responses, has been dealt with
in several ways. An interesting case is the Caylee tree
model first introduced by Weisbuch et al. (1990) and
further developed by Weisbuch er al. (1993) and
Neumann & Weisbuch (19924, b). We refer to this
model as the Weisbuch-De Boer—Perelson model
(WBP). In the WBP model, “tolerant” and “immu-
nized” states result from the autonomous system
dynamics and not from the interaction with an Ag,
which is introduced as perturbations after stability.
Upon introduction of an Ag, these fixed point
attractors are modified but they remain qualitatively
unchanged. Neumann & Weisbuch (199254) also
investigated the impact of the topology on the system’s
response towards external Ag. They found that odd
loops (which correspond to the 3-ccc case) also favor
tolerance. Our results, although obtained using a
dirferent model and different Ag-dynamics, point in the
same direction.

4.4, FUTURE STUDIES

There is a need to study (simplified) higher-dimen-
sional systems. Also, we have to test the robustness of
our results when relaxing the constraint of Boolean
type affinities. In addition, would a system with
meta-dynamics select those interaction schemes
favoring the stable regimes in presence of constant Ag?
Finally, the concentrations of auto-Ags are often
small compared to the normal concentrations of Abs
in the (unperturbed) system, which is what we have
studied here. It would also be interesting to study the
system’s behavior in contact with other auto-Ags
having different types of dynamics and found in other
concentration ranges (Calenbuhr er al., in prep-
aration).
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Appendix A
Analysis of the 3-ccc Phase Portrait

The type-I oscillations show the following behavior
[refer to Fig. 8(b)}: the perturbed clone oscillates
with low amplitude, while the two others oscillate with
a high amplitude. The two non-perturbed clones
always have the same concentration and oscillate
out of phase with the perturbed one. Further,
d{[Ab'])/<i[Ag]> < 0. The laminary phase of the
unperturbed three-clone closed-chain system is in
many respects similar to the type-I regime.

In type-II oscillations, a period-6 attractor, we find
large amplitude oscillations of the unperturbed clones
and low amplitude oscillations of the perturbed clones
[see Fig. 8(c)].

The type-IIl oscillations are characterized by
large-amplitude oscillations of the perturbed clone and
low-amplitude oscillations of the unperturbed clones.
The perturbed clone oscillates out of phase with the
perturbed clones [Fig. 8(d)].

Results may be verified using the starting conditions
indicated below and introducing the Ag at ¢ =250
days. In that way, the reader will be enabled to
reproduce time series as those that we have represented
in the figures. By denoting those values of the
bifurcation parameter [Ag] that lead to a bifurcation
or a change of stability by A we find the following
results:

for 0<[Ag] <4 =6.69 and arbitrary starting
conditions in the range 0 < [f;] <300 and
0 < [b] < 60 the chaotic attractor persists.
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The mean concentration of the perturbed
clone decreases when [Ag] is increased,

4 < [Ag] < 4, = 36.441 and arbitrary start-
ing conditions in the range 0 <[f]< 300
and 0 < [b;] < 60 the chaotic regime degener-
ates into a periodic one with type-I
oscillations,;

;.= 36441 < [Ag] < 4, = 45.215:  birhyth-
micity, type-I and type-II oscillations. The
bifurcation giving rise to two coexistent limit
cycles is similar to a pitchfork bifurcation.
Several starting conditions give rise to
either one of the regimes, e.g. fi = 203.31,

fi=186227, fi=216.121, b= 15.449,
by = 58.952, b, = 7.096 lead to branch I and
fi=217.125, f2=45.770, fi= 155.556,

by = 31.808, by = 22.124, by = 53.206 lead to
branch II. For birhythmicity see Decroly &
Goldbeter (1982) and Alamgir & Epstein
(1983);

43 < [Ag] < 4s = 69.98 and arbitrary starting
conditions in the range 0 < [f] < 300 and
0 < [b/] < 60, only one regime, namely type-I
oscillations, is found,

4= 69.98 < [Ag] < 4s = 70.73: birhythmic-
ity. At A, =69.98 = [Ag] there is again a
pitchfork bifurcation for limit cycles, giving
rise to type-1 and type-1II oscillations. Several
starting conditions give rise to either one of
the regimes, e.g. fi = 166.079, f. = 94.663,
fi=117.336, b, = 16.766, b, =8.210, by =

22.821 lead to branch I and f, = 291.801,
fr=186.241, f,=1224374, by = 21304, b, =

3.16, by=39.021 lead to branch IIL
Also, fi = 71.463, f; = 190.412, f; = 51.675,
b, = 34.596, b, = 30.606, by = 20.668 lead to
branch III. As was described in Section 3.3
and displayed in Fig. 9(b), the basin of
attraction for branch III shrinks with
increasing Ag concentration. Note that in the
middle of the critical zone the first set of
starting conditions giving rise to branch III no
longer falls into this basin of attraction, but
instead leads to branch 1. The second set of
starting conditions giving rise to branch III,
however, does so before, during and after the
critical zone;

" As=70.73 < [Ag] < As = 78.66: coexistence

of branch I and branch III. At 4, =70.73 a
(reverse) Hopf bifurcation occurs on branch
I11, transforming the periodic attractor into a
stable focus. Either regime can be reached
using the same starting conditions as for the
case Ay = 69.98 < [Ag] < 4s = 70.73;

for

for

for

for

s = 78.66 < [Ag] < 4 = 79.2: coexistence of
branch I and branch III. On branch III the
stable focus is transformed into a stable node.
Either regime can be reached using the same
starting conditions as for the case
A= 69.98 < [Ag] < 45 = 70.73;

A =179.2 < [Ag] < 4s = 123.48: coexistence
of branch I and branch I11. On branch II1, two
eigenvalues become positive (corresponding
to the perturbed clone and its B-lymphocyte)
resulting in a saddle-point and hence
instability. This is the only unstable regime
found. Starting conditions fi = 71.463,
£ =190.412, fi=51.675, b =34.59,
b, = 30.606, by = 20.668 lead to branch III;
je = 123.48 < [Ag] < 4o = 149.0: coexistence
of branch I and branch III. On branch III the
saddle is replaced by a stable focus. This stable
focus displays the same concentration pattern
of the three clones as type-III oscillations, i.e.
the perturbed clone has a high concentration
and the unperturbed clones have low and the
same concentration;

i = 149.0: <[Ag] coexistence of branch I and
branch IIL. On branch III the stable focus is
transformed into a stable node.

- Appendix B

Analysis of the 3-occ Phase Portrait, Ag coupled

to Clone 2

Simulations where carried out with random values
in the range 0-300 for the Ab's and 0-60 for the
B-lymphocytes. As there are no coexisting regimes,
results should be easily verified. As one varies the
control parameter [Ag] the following regimes are

found:

for

for
for
for

for

for

0 < [Ag] < 4 = 72.35: type IV oscillations; at
A, a (inverse) Hopf bifurcation occurs and
replaces the limit cycle by a stable focus;

A = 72.35 < [Ag] < 4, = 77.23: stable focus;
A = 77.23 < [Ag] < A; = 78.84: stable node;
i = 78.84 < [Ag] < A4 at 1; two eigenvalues
become positive (corresponding to the per-
turbed clone and its B-lymphocyte) resulting
in a saddle-point and hence instability: the
perturbed clone grows unbounded and the
unperturbed clones die in this region of {Ag];
Je = 116.98 < [Ag] < 4s = 155.75: stable
focus;

is = 155.75 < [Ag]: stable node.
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Appendix C

Analysis of the 3-occ Phase Portrait, Ag coupled
to Clone 1

Here we report only on those regimes that are
characterized by relatively large basins of attraction.
. Results may be verified using the starting conditions
indicated below and introducing the Ag at r= 250
days. In this way, the reader will be able to reproduce
the time series that we have shown in the figures.

For 0 < [Ag] < 4 = 72.52: type-V limit-cycle oscil-
lations. For small values of [Ag] these
oscillations are characterized by the following
concentration pattern: ([Ab,]> > {[Abs]) >
([Ab\]>. With increasing [Ag], {[Ab]>
becomes larger while ([Ab,]> and ([Ab:])
become smaller until we find the concen-
tration pattern {[Ab,]> > {[Ab.]> > {[Abi]).
There is, however, no abrupt change leading
to the dominance of clone 1. The inversion of
the concentration pattern takes continuously
place in the range 30 < [Ag] < 40. Moreover,
upon increasing [Ag] the period becomes
larger. Note that type-V oscillations are
neither similar to type-III nor to type-IV
oscillations where we have the concentration
pattern {[Ab:]> > {[Ab:]) = {[Abi]). Type
V oscillations are characterized by three
different concentration levels of the clones.
One set of starting conditions leading to
this regime is f, =217.125, f,=45770,
fi=155.55, b =31.808, b,=22.124,
by = 53.207.

for

for

for

for

for

A= T72.52 < [Ag] < 4, = 77.02: stable focus;
at A, = 72.52 an (inverse) Hopf bifurcation
occurs, which transforms the limit cycle into
a stable focus; same starting conditions as for
the case 0 < [Ag] < A = 72.52;

A= 77.02 < [Ag] < 4y = 79.1: stable node; at
4, = 77.02 the stable focus is replaced by a
stable node; same starting conditions as for
the case 0 < [Ag] < 4 =72.52;

A =791 <[Ag] < 4, = 114.41: saddle; at
[Ag] < 4;=79.1 two eigenvalues become
positive (corresponding to the perturbed clone
and its B-lymphocyte) resulting in a saddle-
point and hence instability: the perturbed
clone grows unbounded and the unperturbed
clones die in this region of [Ag]; same
starting conditions as for the case
0 <[Ag] < 41 =725

io=114.41 < [Ag]) < 45 =127.10:  coexis-
tence of a saddle and type-V oscillations,
which are now characterized by the concen-
tration pattern {[Ab;]) > {[Ab:]) > ([Ab/]).
The stable branch can be reached using the
same starting conditions as for the case
0 < [Ag] < A, =72.52; -while- the unstable
branch can be reached using the following
set of starting conditions: fi = 29.382,
f,=155749, f,=149.313, b = 59426,
b, = 8.583, b, = 42.268;

is=114.41 > [Ag]: type-V  oscillations
characterized by the concentration pattern
{[Ab;]) > {[Ab,]) > {[Ab,]); same starting
conditions as for the case 0 <[Ag]<
il = 72.52.



