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Abstract

Studies of cancer treatment by surgery and/or radiotherapy often use time to local
failure as an indicator of treatment efficiency. We model local recurrence of breast
cancer as the result of two competing risks which we relate to two populations of
tumor cells. By maximum likelihood estimation, we obtain the estimates of the
expected numbers of clonogens for early and late recurrences and their progression
time parameters. The estimates are coherent with clinical observations. The differ-
ence in the mechanisms of the two types of recurrence reflects the differential tumor

vgressiveness.

Key words: Parametric model, breast cancer recurrence, competing risks, ML
estimates.
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21.1 Introduction

In recent years, conservative treatment of breast cancer by local surgery and/or
radiotherapy has become a widely accepted alternative to mutilating mastectomy.
The evaluation of such treatment techniques is often based on the risk of local
recurrence [5,15]. Local recurrence refers to any tumor relapse within the treated
breast. It represents either a true recurrence or a second tumor. In practice, its
localization gives an indication of its origin. A recurrence at or in the immediate
vicinity of the original tumor bed may be interpreted as a true recurrence whereas
a recurrence elsewhere is considered frequently as a possible second cancer or a
preexisting subclinical tumor at the time of the treatment.

Within 5 years of the primary treatment local failure occurs in 2% to 30%
patients. From 5§ years up to 20 years and perhaps beyond, the local recurrence
rate is 5% to 25% [15]. Early recurrence seems to be related to metastasis [4,5,15 )
Since it carries poorer prognosis than late recurrence it is considered as a marker
of aggressive tumor biology.

In order to better understand the process of local tumor progression, we pro-
pose a modelling of the two types of recurrence dynamics observed in the clinical

settings.

21.2 The model

At the end of the treatment, the cells that will propagate into a newly detectable
tumor—we call them clonogens—are surviving neoplastic cells capable of giving rise
to tumor regeneration. Consider the case when tumors are exposed to large single
doses of radiation or chemotherapy. In this case it is natural to assume that the
number N of clonogens prior to irradiation is very large but the probability p of their
survival after the treatment is very low. If N is nonrandom, one may confidently
consider the number v of surviving clonogens as a Poisson random variable (r.v.)
The probability n of tumor cure (no surviving clonogens) is given by

1=Plr=0)=c’ o

where § = Np is the mean number of clonogens surviving the treatment.

If N is random the situation is not simple except when IV is also a Poisson
variable—in which case formula (1) remains valid. Considering that cell prolifera-
tion might occur during the time intervals between successive fractions of radiation,
in principle one can no longer expect the number of surviving clonogens to be Pois-
son. In a computer experiment, Tucker et al. [24] showed that deviations from
Poisson statistics might result in a bias of about 10% for the estimate of the proba-
bility of cure in most standard treatment regimens. However in our view this (small)
bias has been overestimated due to the chosen probability of cell division between
consecutive fractions. This probability—set by the authors to be 0.4—is too high
in view of:

¢ the typical mitotic cycle duration in tumors,

e the asynchronous entry of cells into the prereplicative period after irradiation,
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e the radiation-induced block of DNA synthesis and mitosis which frequently
exceeds the one-day interval chosen by Tucker et al. (see the discussion in
Yakovlev and Zorin [25]).

Therefore, we rejoin most authors in maintaining the assumption that the number
of remaining clonogens is a Poisson variable (18,19,20,21,22]. We proceed from this
assumption to develop our model of tumor recurrence.

Each surviving clonogenic cell possesses in the long run the capacity of giving
rise to an overt tumor. Let X; be the random time for the i-th clonogen to produce
a detectable tumor. By analogy with the terminology accepted in carcinogenesis
studies we call X; the progression time. Nonnegative r.v.’s X; for 1 = 1,2, ...
are assumed to be independent and identically distributed (i.i.d.) with common
distribution function F(z). The time to tumor recurrrence can be defined as the
“)ndom minimum
’ U= min X,

0<i<v
where Xy = 400 with probability one.

If v is a Poisson r.v. independent of the sequence X, X, ..., the survival func-
tion G(t) = 1 — G(t) for the r.v. U can be easily obtained:

Gt)=PU>t) =Y —e?(1-F(t))* =e0F®) 2)

The key advantage of this model is to show explicitly the contribution of the
two characteristics of tumor growth: the mean number of clonogens # and the rate
of their progression described by the function F(t). Their estimation, if feasible,
furnishes additional information on the biology of tumor recurrence, thereby of-
fering a more refined interpretation of observational data. The survival function G
corresponds to a substochastic distribution and its limiting value G(+00) = e~? rep-
resents the probability of tumor cure (compare with formula (1)). Most parametric
models implicitly assume a zero limiting survival probability [3,10]. The impor-
tance of allowing for a survival fraction in failure-time models has been recognized

“¥ several authors [8,11,14,16,17,27]. )
>  The hazard function A(¢) defined with respect to G(t) is

A(t) =05 (t) (3)

where f is the density of the distribution F'. If the progression time distribution F is
unimodal, then the hazard function A(¢) has a maximum. Note that the assumption
on the exponentiality of F' should be rejected since that would correspond to the
unrealistic case of a monotone decreasing hazard.

To describe a possible heterogeneity of clonogens with respect to the progres-
sion time distribution, introduce k different types of tumor cells with distributions
F;(t). Then the progression time distribution F is represented by a finite mixture

k k
F(t) = quFj(t), 0<g; <1, qu =1. (4)
j=1 j=1
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This mixture of distributions yields the independent competing risks model for
the function G, i.e.,

k
G(t) = [ [ exp (- 60g; F5(2)) (5)
j=1

where fg is the expected total number of viable clonogens of various types existing
in the treated tumor. Within the framework of this model the hazard functions \;

are additive and .
At) =00 qif;(t) -
j=1

In view of the last formula, it is not surprising that the bimodal shape of the
hazard function arises when breast cancer recurrences originate from two distinct
populations of progenitor cells, i.e., the fast and slowly evolving clonogens, as show -
below.

21.3 Estimation of parameters

Within the scheme of right independent censoring [10] the likelihood for a random
sample of size n is of the form

L=TTgt;) [T Gx(se) (6)
i k

where g(t) = —G'(t) is the corresponding probability density function, ¢; for j =
1,...,m (m random) represent the observed failure times and si for k =1,..,n—m
are the censored observations.

If one selects a two-parameter family of distributions to approximate the func-
tion F in (2), then there will be only 3 parameters to be estimated from the time-
to-recurrence observations, the estimation of which is feasible by the maximization
of the likelihood function L . Because of its flexibility, we choose F' to be a gamma

distribution with the density _ -
. N
~ Y

Q
ft) = l,ﬁm—)ta‘le“ﬂt, a>1, t>0, ”
where o and 3 are shape and scale parameters respectively. The mean 7 = a/B
and the standard deviation ¢ = y/a/8 of the progression time can be computed.
This progression time model reflects to some extent the multistage structure of the
tumor development process.

Another reason for such a choice is that finite mixtures of gamma distributions
are identifiable [23,26], and so are the competing risks models of type (5) when
applied to the description of tumors arising from a heterogeneous population of
clonogens.

To maximize the log-likelihood £ = log L(6, o, ) with respect to the unknown
parameters 6, &,  we use the following 3-step procedure.

e Step 1: apply the random search algorithm (28] that requires the specification
of a domain A containing the overall maximum but not a starting point for
the optimization.

~
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e Step 2: apply the Davidon-Fletcher-Powell algorithm [6] with the initial points
provided by step 1. If the boundary of the set A is attained then go to step
3, otherwise step 2 gives the final solution.

e Step 3: apply the Zoutendijk algorithm [6] allowing for constraints which
specify A.

In order to simplify the computations, we confine the search for the value of «
that maximizes the log-likelihood £ to the set of positive integers, i.e., the problem

max ¢ is replaced by
6,a,0

max £/ where /= max/.
2<a<amax 6,8
. It suffices to take amax = 20 to cover all reasonable values of the variation
~“befficient 1//a, the smallest being equal to 0.2 .

The above-outlined numerical algorithm (see Appendix A for details) may
readily be applied to the multicomponent model given by (5). Further insight
into the properties of the estimates for finite samples is provided by statistical
decision theory: It can be shown that the maximum likelihood estimator is close to
a minimax estimator (see Appendix B).

21.4 Early and late recurrence in breast cancer

We apply model (5) to analyze data on breast cancer recurrence for 877 patients
treated and followed at the Institut Curie from 1960 to 1988. Description of a
sub-cohort is given by Fourquet et al. [5]. The data include the localization of the
recurrences in terms of their occurence in the same quadrant as the primary tumor
or elsewhere, the time to tumor recurrence and the censoring index value.

First consider the ipsilateral (treated) breast as a whole. We proceed from
the independent censoring of the data caused by recurrences in the contralateral
breast because there are grounds to believe that cancers in the two breasts develop
independently of one another after the treatment [1,9]. Plots of the parametric
¢ i>stimate based on model (5) and the Kaplan-Meier disease-free curve are shown
™ in Figure 21.1A. Figure 21.1B represents the parametric estimate and the Belayev
kernel estimate [2] of the corresponding hazard function.

The model provides a good description of the data for & = 2, implying the
existence of two competing populations of clonogens that give rise to the tumor
recurrence. For k=1, the goodness of fit test developed recently by Hjort [7] rejects
the null hypothesis at a significance level of less than .001. When we assume k=2,
the significance level is aproximately .1, thereby indicating that the two competing
risks model is consistent with the data. .

The mean number of surviving clonogens and the progression time parameters
for the two populations are presented in Table 21.1. The estimate of 02 is expected
to be less precise than that of #; because of the censoring effects, and this emerges
in the corresponding asymptotic confidence intervals (Table 21.1). Note that both
the life-table and the kernel estimates indicate the bimodal shape of the hazard
function in this case.

It is generally accepted that a high rate of growth is indicative of the tumor
aggressiveness, this being valid for early recurrences in all regions of the treated
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Figure 21.1: Disease-free and hazard curves for the ipsilateral breast cancer (A) Estimated
disease-free curves. Solid line: parametric estimate, stepwise curve: Kaplan-Meier estimate.
(B) Estimated-hazard rates. Solid line: parametric estimate, stepwise curve: kernel estimate.

breast. The model makes it possible to relate early recurrences to those originating
from the rapidly evolving subpopulation of clonogens.

It is questionable whether the data on quadrants may be considered in the
same way. If there is a mutual dependence between the tumor cell clones evolving
in the regions of the treated breast, the censoring mechanism can no longer be _
assumed independent. Should this be the case then both the nonparametric anw
parametric estimates would not be appropriate for estimating the corresponding
marginal survival functions nor would the Hjort test be tenable for testing the
goodness of fit.

To elucidate this point, we analyze the data on quadrants as if there were
independent censoring of the time-to-tumor observations. Figures 21.2 and 21.3
exhibit the disease-free and hazard curves for the same and the other quadrants
respectively. Again, we proceed from the two competing risks model to provide a
better description of the data. . :

Parameters for different populations of clonogens responsible for tumor recur-

‘ rence in all the quadrants of the ipsilateral breast are given in Table 21.2. The
| rapidly developing population manifests itself in the same and in the other quad-
rants, thereby indicating that there is no perfect correspondence between the tem-
poral characteristics, i.e., the proliferative potential of clonogens, and their location
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Table 21.1: Asymptotic likelihood inference on the ipsilateral breast cancer recurrence.

Parameter Maximum Likelihood Asymptotic .95

Estimate Confidence Interval
01 0.11 0.08 , 0.14
o1 4.00 3.52 , 4.48
51 0.076 0.064 , 0.088
0 1.07 0.00, 3.19
oo 5.00 1.33, 8.67
B2 0.012 0.00 , 0.27

A

/able 21.2: Maximum likelihood estimates of the parameters for model of tumor recurrence.
Legends. # clonogens: expected number of clonogens, time: mean progression time in months,
std deviation: standard deviation of progression time

# clonogens time std deviation
localization 0, 0, T T o1 o9
ipsilateral breast 0.11 1.07 53 431 26 193
same quadrant 0.07 5.17 59 1048 34 468
other quadrant 0.05 0.34 50 315 29 157

in the treated breast. Recall that the analysis of the pooled data for the ipsilateral
breast also reveals such fast growing population of tumor cells.

At the same time, the progression time parameters of slowly evolving clono-
gens differ widely and the values of 8, for the two regions (see Tables 21.1 and
21.2) are too far from summing up to the value for the entire breast. This clearly
demonstrates that our independence assumptions are likely to break down for this
type of data.

S When analyzing the contralateral breast cancer in a similar manner, one meets
#"with the problem of discriminating between a true recurrence and a new cancer of
the same histological type and localization. This problem will be addressed in a

future paper.
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Figure 21.2: Disease-free and hazard curves for the same quadrant of the ipsilateral breast (A)
Estimated disease-free curves. Solid line: parametric estimate, stepwise curve: Kaplan-Meier
estimate. (B) Estimated hazard curves. Solid line: parametric estimate, stepwise curve: kernel

estimate.

21.5 Appendix A. Estimation procedure
: O
21.5.1 Random Search o

The algorithm is based on Zigliavskij’s theory of random search [28]. Let
Z = {£&,62,...,&} be a sample from the parametric space Q and {n1,m2,-- -}
the corresponding sample of function values where, for i = 1,2,..., mi = (&)
are ii.d. with distribution function U(%). Statistical inference on the value of
¢ = maxg, £(&;) is based on the k+1 maximal order statistics 7(n), Mn—-1)s - » Mn—k)*

Denote V(v) =1 — U@ —1/v). Assume k = k(n), nlif%o k*/n =0 and
vango V(tv)/V(v) =t=%, forv > 0and 0 < a < co . The latter assumption is typical

in the theory of extreme values; It usually holds for not very exotic functions. The
statistic [£ — 7(n)] /|M(n) — M(n—k)] converges in distribution to a random variable
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Figure 21.3: Disease-free and hazard curves for other quadrants of the ipsilateral breast. (A)
Estimated disease-free curves: Solid line: parametric estimate, stepwise curve: Kaplan-Meier
estimate. (B) Estimated hazard curves. Solid line: parametric estimate, stepwise curve: kernel
estimate.

k
_V.._.:;.Szvith distribution function Fi(u) = 1 — (1 - (u/(1 + u))a) , for u > 0. The

) z'a,symptotic one-sided (1 — «)-confidence interval for £ is
[n(ﬁ) » Nny + (k1) (M) — ﬂ(n-k))] (A1)

where r(k,v) = [ (1—7)~/—1]|~!. Its asymptotic length is equal to (£—6,)é(k, )
where 8, = inf{v : 1 — U(v) < 1/n} and ¢(k,7) = r(k,7) [((T(k + 1 + 1/a)/T(k +
1/a)] with klim o(k,v) = (—Iny)Y®. Note that for k = 10, the limit of ¢ is

practically attained.

The unknown parameter a may be replaced by its consistent and asymptot-
ically unbiased estimate & = In(k/m)/In|(nn) — Nn—k))/ (M(n) — Min-my))]. For
a > 1 and k — oo such that ¥/n — 0 and m/k — 7, where 0 < 7 < 1,
lim E(@—a)® = o?(1-1)/(7 In?7). Note that the latter function is minimal

k—oo
at T = .2, i.e.,, m = k/5.
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Now, suppose we have a sample = in some subset of the parametric space {2 .
Let My be a record of £ in the whole parameter space. To test the hypothesis that
the subset contains the global maximum, we use (Al) and reject this hypothesis if

Mo > n(ny + 7k, ¥) (Nm) = N(n—r)) (42)

where the right hand side of inequality (A2) is computed for the subset. Again,
for n =~ 100 , the optimal value is almost attained with ¥ = 10 . If we have a
nested sequence of subsets 2 O 2; D Q3 D ... then the probability that the global
maximum is not lost is at least 1 — v .

21.5.2 Zoutendik algorithm

In the search for 3 o
¢ = max £(&) (A3,

let & be the vector obtained at the k-th iteration. Consider the solution si to the
maximization problem

_ max |£(&) + grad(€(&)) & (A4)
{€x:6x+Ex€Q}

The solution to the problem

¢ A
(At isncn) (&) + A

gives the vector &k+1 = &k + Asy for the next iteration. This method is the best
among optimization methods with constraints using the gradient vector or its ap-
proximation [6]. Although problem (A4) may prove to be as serious as problem
(A3), it may be solved by the simplex method when § is a polygon as in this case.

Remark. Usually the global minimum of the log-likelihood function is located
in the inner point of the parametric space where it is approximated much better
by a quadratic function than by a linear one. The Fletcher-Powell algorithm ap-_
proximates the function linearly at first but as the number of iterations grows tl: )
approximation becomes quadratic (it converges to Newton algorithm). With this”
algorithm calculations are much faster than with the gradient type algorithms and
it does not require the second derivatives as well. For these reasons, we go through
step 2 before step 3.
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21.6 Appendix B. An optimal estimator for G(%).

Consider the following statistical problem. Let U be a positive r.v. whose distri-
bution function belongs to a parametric family {P(t/o); ¢ > 0} with o denoting
an unknown scale parameter. Let ¢y, ...,t, be the sample of size n from this dis-
tribution. The problem is to estimate the survival function Q(t/c) = 1 — P(t/0)
from the sample ¢4, ...,t, . The conventional approach to this problem implies the
construction of an appropriate estimator , = Jn(t1,...,tn) for the unknown pa-
rameter o with subsequent use of the function Q(t/4,) as an estimator for Q(t/o).
However, it seems more natural to search for a statistic Q(t) = Q(t;t1, ..., tn) which
estimates the survival function directly but not necessarily through Q(t / Fn).

To characterize the losses caused by using Q(t) as an estimator for Q(t/a),
:}Ptroduce the loss function

L@ =12 | Q) - Q(t/0))

o2

The expectation X X

RyQ = EoL(Q;0)
is called the risk of the estimator Q . It is assumed that function
Q(t) = Q(¢;t1, ..., tn) is measurable with respect to ti,...,t, for almost all ¢ , and

also measurable Yvith respect to ¢ for almost all 4, ...,¢,
A statistic Q(t) is called a proper estimator for the survival function Q(t/o) if

for every a > 0

Q(at; aty, ..., aty) = Q(t;t1, .oy tn) -

It is easy to show that the risk R, of a proper estimator does not depend on the
parameter o . We are interested in finding an estimator that minimizes the risk
R, over the class of proper estimators. Assume that the c.d.f. P(t) is absolutely
continuous and has a finite first moment, and let p(¢) stand for the density of P.

Theorem (see [12]). Under the above assumptions,

£ n
B Jo. Qtw)u [T)—, p(tju)du B
vO= Joo wr [Tj=y p(tju)du (B1)

is optimal in the class of proper estimators of the survival function Q(t/o), o > 0.
It is minimaxz in the class of parametric estimators.

Let t; for j = 1,..,m and s for k& = 1,..,n — m represent the
observed failure times and the censored observations respectively. A statistic
Qci(t) = Qeititsy, oo ti,; Skys e Skn_..) is called a proper estimator for the sur-
vival function Q(¢/c), o > 0, under independent right censorship, if for every
a>0

ch(at at]1, y @lj,, 5 Sy - 7askn—m) = Qci(t; Cjrsoeorbims Skyseons Skn-m) .

The corresponding optimal estimator Q7; can be obta,ined by using (6) instead of
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fo tu)umnjp<tj ) T Q(sku)du
fo umij(tJ ) [T, Q(sku)du '

Consider the survival function for the duration of tumor latency given by (2).
Assume that § = 1/0 is an unknown parameter and F' a prescribed distribution
function. Despite the fact that o is not a scale parameter of the function G(t) one
can introduce a new variable £ = F(t) and reduce the model to the one considered
above. In the case of a censored sample, it follows from (B2) that the optimal
estimator of G is

- B F(t) —(m+1)
Calt) = (1 i 2 Fty) +J 2 F(Sk)) ' (B3)

If the observed survival is high, one may expect that the estimator given i 3
(B3) will be numerically close to the maximum likelihood estimator

Qau(t) = (B2)

% B mF(t)
Gle) = exp ( S F() + 5 F(sk>) '

The above result gives one more reason to use the maximum likelihood method
for estimating the parameters in models (2) and (5).
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