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Abstract—The analysis of biochemical processes can be supported using methods of modelling
and simulation. New methods of computer science are discussed in this field of research. This
paper presents a new method which allows the modelling and analysis of complex metabolic
networks. Moreover, our simulation shell is based on this formalization and represents the first
tool for the interactive simulation of metabolic processes.

Simulation shell modelling Metabolic pathways Metabolic networks
Metabolic bottleneck

1. INTRODUCTION

Methods of molecular biology make possible the isolation, sequence analysis and
synthesis of genes and enzymes [1]. This method produces an exponential growth of
biological data. With regard to gene sequences (enzymes) the following database systems
are popular—GENBANK, EMBL and JJDJ (SWISSPROT, PIR)—and can be ordered
by CD ROM or used via electronic mail [2]. Moreover, biotechnological methods
facilitate the analysis of biochemical processes. Enzymes are biosynthetic products of
specific genes, which catalyse biochemical processes. Metabolic pathways are cascades of
biochemical reactions, which can interact and create complex metabolic networks [3].
Analysis and synthesis of metabolic networks are the main aims in the field of metabolic
engineering [4]. In the case of metabolic pathways Boehringer analyzed and prepared all
data [5]. The so-called Boehringer wall picture, which represents these data by a
graphical notation, can be requested from Boehringer Mannheim. Based on this dataset
different database systems are implemented. A fundamental component for the realiza-
tion of metabolic engineering is the implementation of integrated information systems,
which represent genes, enzymes and metabolic pathways. In this domain of research,
Karp has developed the first metabolic information system for E. coli [6]. Moreover,
modelling of metabolic processes in combination with such information systems will be
the basic tool for metabolic engineering. Therefore, dynamic models which allow the
implementation of useful interactive simulation programmes are important. With regard
to modelling metabolic processes, different models are discussed. Abstract models are
based on binary automata or logical approaches which facilitate the qualitative discussion
on an abstract level [7,8]. Analytical models are based on the use of differential
equations which make possible the exact simulation of concentration rates. However, the
simulation of kinetic effects is possible. The disadvantage of this method is the effort of
the computational complexity and the fact that concentration rates are not available
nowadays. Discrete models facilitate the qualitative modelling of metabolic networks
and are based on the theory of formal languages, automata, graph theoretical
approaches and methods of artificial intelligence.
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The aim of our work is to develop a new concept of modelling and simulation of
metabolic processes. Therefore, we defined a grammatical formalization which allows
the simultaneous modelling of genetic processes, biosynthetic processes and cell commu-
nication processes. This model is an extension of the semi-Thue system [9] and
represents special rules for specific approaches. Our formalization, genetic grammar
[10], allows the definition of different languages, which discuss different biological
aspects [11]. Moreover, we implemented a simulation shell based on genetic grammar.
While using this simulation shell, different disadvantages became visible. Based on this
project we developed a probabilistic rule based system defining a universal rule, which is
able to describe different metabolic processes in a biochemically orientated language.
Besides, we developed a user friendly shell which allows the use of this simulator without
any previous knowledge of programming and computing.

In this paper we present a new concept which represents the first method of interactive
modelling and simulation of complex metabolic processes. The approach is important in
the research field of metabolic engineering, because analysis of metabolic pathways
becomes more and more important [4] in biomedicine and biotechnology. The reason is
that genetic defects cause diseases and ought to be identified. An important application is
the detection of metabolic bottlenecks [12, 13] because such configurations signal specific
concentration rates, based on genetic defects.

2. BIOCHEMICAL BASIC KNOWLEDGE

The metabolism is based on biochemical reactions. Modelling and simulation are
important in understanding the behaviour of biochemical reactions. Therefore, the
empirical data must be interpreted. In the case of genes, enzymes and biochemical
reactions multiple data are available. Several models have been developed. The main
gap in the field of modelling and simulation is the development of an integrative and
interactive simulation shell [14]. Integrative means that this model enables us to discuss
biosynthetic processes, gene regulation processes and cell communication processes.
Therefore, integrative models allow the discussion of complex metabolic networks.

The genetic information (DNA) controls metabolism indirectly [15]. The protein
synthesis of structural genes produces specific enzymes which catalyse biochemical
reactions. The transcription of these genes has to be regulated by enzymatic mechanisms.
The fundamental model of gene regulation is based on the model of Jacob and Monod
[16]. Regarding this model the operon, which consists of the promotor, structural
gene(s), and the terminator sequence, is the primary unit of the gene regulation
complex. The RNA polymerase makes contact with the promotor sequence and starts
the transcription process. The affinity of the promoter/RNA polymerase complex is
defined by specific sequences (Pribnow box). Homeotic genes, transposons, enhancer
and silencer genes demonstrate that gene regulation is a complex process regarding
eucariotic cells [1]. The biochemical control of a cell is defeated by biochemical
reactions, which change substrates into products (S— P). This can be done sponta-
neously or can be catalysed by specific enzymes. Mostly biochemical reactions are two-
way processes catalysed by specific enzymes. Therefore, concentration rates are import-
ant (S5 P). However, the flux of biosynthetic processes is controlled by the enzyme
affinity, the enzyme concentration and the reaction rate. Specific regulatory proteins and
enzymes—influence proteins—are able to modify these parameters.

In the case of two-way biochemical reactions, the enzyme will catalyse biochemical
reactions from the higher to the lower level of concentration rates. Moreover, kinetic
effects are important [17]. Most biochemical reactions follow the Michaelis—Menten
kinetic scheme characterized by the following equation:

V=—dS/dt=V%, SIS+ Ky,

where V is the reaction rate, S is the substrate concentration at the given rate of reaction,
V... is the maximum reaction rate regarding substrate saturation and K, is the Michaelis
constant. V and K,, are two constants that characterize the interactions of the enzyme
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with its substrate. Enzymes can be controlled by modifying the affinity, efficiency and
specification of the enzyme. However, genes and their regulation mechanisms, biosyn-
thesis and their catalysis, and cell communication processes are called elementary
metabolic processes, which define the behaviour of metabolism. All these processes
build metabolic networks, which are connected with elementary metabolic processes,
which influence each other in a well defined way.

Moreover, to develop a useful integrative model the main features of metabolic
processing must be considered and implemented. Therefore, we will discuss the charac-
teristics of the metabolic processes. Operons, known as genetic instructions, are
activated depending on the specific promotor affinity which can be influenced by specific
DNA units as silencers or enhancers. Therefore, the genetic instruction must be
interpreted as a probabilistic instruction. Operons can be activated simultaneously, that
means metabolic processing is based on the concept of parallel processing. A main
feature of the genetic information is the modular organisation of the genome which is
demonstrated by the function of homeotic genes [15]. Mutator genes, transposons and
virus genomes demonstrate the dynamic of the genetic instruction sets. Moreover, the
metabolic processing is based on the concept of dataflow processing. Based on these
features we will develop a rule based system, which models and simulates integrative
metabolic processes.

3. THEORETICAL BASIC KNOWLEDGE

In this paper the standard mathematical symbols are used. U denotes the union of
sets, c denotes the sub set, and * denotes the Kleene star operator. [0, 1] denotes all
rational numbers between 0 and 1. An alphabet is a finite set of symbols. A (formal)
language is a set of strings of symbols from any one alphabet. A semi-Thue system is a
Chomsky type 0 grammar [9]. This is a 4-tuple G=(V,T,P,S). Vis a finite set of
variables (also called non-terminals or categories), each of which represents a language.
The languages represented by the variables are described recursively in terms of each
other and primitive symbols are called terminals. T represents the finite set of terminals.
We assume that V and T are disjoint. P is a finite set of productions; each production is of
the form a— b, where ae (V U T)*. Finally, S is a special variable called the start symbol.

The language generated by a grammar can be defined by two relations; (=) and ()
between strings in (V U T)*. If a— b is production of P and a and b are any strings in
(V U T)*, then xay = xby. We say that the production a— b is applied to the string xay to
obtain xby or that xay directly derives xby. Suppose that a,,...,a, are strings in
(VUT)*, n=1, and a,>a,>. ..>a,. Then we say a,>a, or a, derives a, in grammar G.

A multi-set m upon a set X is a function m: X—N. Elements and their quantity are
combined in a set of 2-tuples. Example: Let X={a, b, c}. A possible multi-set upon X
would be: {(a, 2), (b, 0), (c, 1)}. For two multi-sets m and k upon X the usual set-
operations are defined:

xem=m(x)>0
kcm=VaeX: k(a)<m(a)
k+m=k(d)+m(d)

k —m=k(d)—m(d).

4. METHOD

There are many models and simulation shells available in the research field of
modelling and simulation of metabolic processes. Most of them are based on differential
equations which try to simulate biosynthetic processes [18, 19]. However, no model or
simulation shell exists which is able to discuss integrative metabolic processes. Our idea
is to transform the analyzed metabolic knowledge into an integrative model. Metabolism
is based on metabolites, metabolic structures and biochemical reactions. Metabolites and
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metabolic structures can be interpreted as a specific alphabet and the biochemical
reactions are rules for this alphabet. Therefore, we choose the theory of formal
languages to develop a suited model. However, Chomsky grammar must be expanded
into the analyzed features of metabolic processes. Therefore, a probabilistic, parallel
rule-based system will be presented. The implementation of this formalization presents
the first interactive simulation shell for the modelling of metabolic processes {20].

4.1. Probabilistic parallel rule-based system

Our model is an extension of the genetic grammar [10]. Moreover, using a universal
rule, this formalization allows the representation of genetic, biosynthetic and cell
communication processes. Furthermore, it is necessary to enlarge this discrete model by
adding concentration rates for each metabolite. Metabolites are substances or substance
concentrations, which can be modified by biochemical reactions. Enzymes are specific
proteins which catalyse biochemical reactions. Inducers and repressors are metabolites,
which are able to speed up or slow down (prevent) biochemical reactions. The
biochemical space (cell state) of a cell is a mixture of these components. The set of all cell
states will be denoted by Z. By these definitions the abstract metabolism is given by the
actual cell state and the biochemical reaction rules. The metabolic rule is the basic unit of
the metabolic system. This is a universal rule, able to describe all blochemlcal reactions.
Moreover, this rule set defines the set Z indirectly.

Definition 4.1: metabolic rule. Let Z be a finite set of cell states. A 5-tuple
(B,A,E,I,p)withpe[0,1]and B, A, I, Rc Z is called a metabolic rule, p is called rule
probability, B (before) a set of preconditions, A (after) a set of postconditions, E
(enzyme) a set of catalysed conditions and / (inhibitor) a set of inhibitor conditions.

Based on the metabolic rule we are able to define the basic model.

Definition 4.2: metabolic system. G=(Z, R) is called a metabolic system, Z is a finite
set of cell states, S Z is called the start state and R is a set of metabolic rules, called a
metabolic rule set.

In the following we define the meaning of the metabolic system. The integration of the
analyzed metabolic features is the basic idea of this formalization. This is the reason we
develop a stochastic parallel derivation mechanism, which will describe the change of
actual cell states depending on the specified rule set. Therefore, the set of all activated
rules must be fixed. This will be the first step of the derivation process. A rule is activated
if all preconditions of this rule are also elements of the actual state ze Z. Moreover,
effects of inducer and inhibitor elements must be considered. If such influential
metabolites are elements of the actual state z, then the probability of this rule will be
modified by inhibitor and inducer effects (the rule probability will be modified by these
elements). The function CALCULATE(z, r) will determine the absolute probability
value of rule r depending on state z. A random generator (RANDOM) using the
absolute probability value of the input works as a Boolean function and will produce
either positive or negative results (true or false). Regarding the Boolean value true
(false), re R is activated (deactivated) and goes into action.

- Definition 4.3: activation. Let G =(Z, R) be a metabolic system, r=(B, A, E,I,p)eR
a rule and z € Z a cellular state, r is activated by z (in symbols r,), iff Vxez. Vxe BxeZ
A(z)={reR:ris activated by 2z} is called the set of activated rules by z.

Any activated rule re R can go into action. The action of r will modify the actual
cellular state of the metabolic system. Elements of the actual cellular state, which are
elements of the before set of rule r will be eliminated in z and all elements of the after
component will be added to z. Therefore, the action of rule r can produce a new state
z'e”.

Definition 4.4: action. Let G=(Z, R) be a metabolic system, z € Z the actual cellular
state and r,= (B, A, E, I, p)e R. The action of r, is defined by:
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If RANDOM(CALCULATE(z, r)) =true then z' = (z-B) U A.
The action of r, will be described in symbols by z—z".

The one step derivation of a metabolic system is defined by the (quasi) simultaneous
action of all activated rules. Therefore, we consider the set of all activated rules and
determine two new sets: the before set and the after set. The before set includes all B-
elements of the activated rules. The definition of the after set is analagous. Using these
sets the one-step derivation could be interpreted as an addition and subtraction of
elements.

Definition 4.5: one-step derivation. Let G=(Z, R) be the metabolic system, z€ Z the
actual cellular state, A(z) the set of all activated rules under z and B,={B:3re A(2)
Ber}and A,={A:3re A(z) Aer,}. The simultaneous action of A(z) is called one-step
derivation, iff z'=(z—B,) UA,. The one-step derivation is described in symbols by
2>z

Each action could be interpreted as an independent event. Therefore, the probability
of each one-step derivation can be calculated with respect to the absolute probability
values of all activated and deactivated rules. In our simulation system this will be done by
multiplying these values.

Definition 4.5 defines the parallel derivation procedure. However, based on the one-
step derivation we can define the derivation inductively. However, based on the one-step
derivation, probability can be calculated for any derivation. :

Definition 4.6: derivation. Let G=(Z, R) be a metabolic system. xeZ* is called
derivation in G, iff |x|=1 or |x|>1 and 3y’ € Z*3z’, "€ Z: x=z'z"y and 2"y is a
derivation and z' =>2z".

In the case of analytical modelling it is necessary to expand our model using abstract
concentration rates. To realize this requirement of each component (metabolite) specific
integer values must be assigned. These values can be interpreted as abstract concentra-
tion rates. Regarding the metabolic system, these effects can be included using the
formalization of multi-sets. Therefore, the definition of the metabolic system must be
modified. Regarding the activation of a rule the concentration rate of any before
component must be satisfied in connection with corresponding metabolites of the actual
state. The concentration rate of this metabolite must be higher or equal in comparison
with the corresponding before component of this metabolic rule. Moreover, the function
CALCULATE must be modified. In this case the influence of all concentrations of
inductor and repressor metabolites will determine the absolute rule probability. All
activated rules can go into action simultaneously. With regards to corresponding
metabolites of the actual state (integer values) the addition and subtraction of the
concentration rates of all before and after components is needed. In this chapter we
present only the fundamental part of this formalization.

Definition 4.7: metabolic concentration. Let z € Z be a state. The multi-set k: z— N is
called the metabolic concentration. K denotes the set of all metabolic concentrations.
Notation: The actual state z={Lactose, Glucose} represents two metabolites. The
multi-set k of z, k(z) = {(Lactose, 12), (Glucose, 22)}, represents 12 units of lactose and
22 units of glucose. In the following we use a specific notation for metabolic concentra-
tions: [12 Lactose, 22 Glucose].

Based on the formalization of multi-sets, the analytical metabolic systems, which
enables the discussion of kinetic effects, can be defined.

Definition 4.8: analytical metabolic system. The 3-tuple G=(Z, R, k) with Ae Z the
start state, ke K a multi-set (K: A—N) and R is a finite set of metabolic rules, where
r=(B,A,E,I,p)eRwithpe[0,1]and B, A, E, I are metabolic concentrations, is called
the metabolic system.

The definition of activation is fundamental. Regarding multi-sets the activation of any
rule reR depends on the specified concentration rate of each rule component, the
concentration rate of the actual state and the absolute rule probability.
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Definition 4.9: activation. Let G=(Z, R, k) be an analytical metabolic system, reR a
rule and ze Z a cellular state. r is activated by z (in symbols r,), iff Vxe B xez and
k(x)<k(z2).

A(z)={reR:ris activated by z} is called the set of activated rules by z.

Based on this definition the one-step derivation can be modified. All activated
metabolic rules can go into action simultaneously. Regarding the set of activated rules,
all after concentrations must be added to the actual state and all before concentrations
must be subtracted from the actual state.

Definition 4.10: one-step derivation. Let G=(Z, R, k) be an analytical metabolic
system, z the actual cellular state, A(z) the set of all activated rules under z and

B,={B:3reA(z) Ber}and|B,|= Z k(b),

beB

A,={A3reA(z) Aer}and|A,l= k(a).

acA
The simultaneous action of A(z) is called one-step derivation, iff
z'={x:xeA,orVxez,yeB,x=yand k(x) — k(y) >0}.
The one-step derivation is described in symbols by z=>z".

Using the one-step derivation operator we can define the derivation of an analytical
metabolic system inductively (see definition 4.6).

4.2. Metabolica

We developed a simulation shell (Metabolica) based on the theory of the analytical
metabolic system [20]. This simulation shell can be used by applying biochemical terms
which are implemented in C and run on a SUN Sparc workstation. When Metabolica is
started the rule set and the start configuration is either located automatically or is
manually defined. Its main.parts are the rule editor and the configuration editor/browser.

The rule editor handles the construction and definition of metabolic rules and rule sets.
This is done by describing the elements of the specific rule. The integer value, which can
be placed in front of each specific rule component, represents the specific abstract
concentration rate. Rules are identified by an obligatory comment. Sets of rules may be
saved, loaded and merged.

The main window has a number of different functions depending on the selected
mode, e.g. the start/set mode allows the loading or entering of the start configuration of
the metabolic system. The pathways mode allows the viewing of every reached configu-
ration of any derivated generation. The trade off between time and space vs accessibility
is parameterized by the number of pathways which are calculated for every generation.
To limit memory usage all intermediate configurations can be disposed of.

To begin with biochemical environment must be defined by metabolic rules. In the
next stage the actual state (substrate) must be defined using the start set mode.
Moreover, a specifically set goal (product) can be defined, which will be represented by a
specific concentration rate of metabolites. The system can produce different derivations
simultaneously and the number of pathways can be specified by the user. Moreover, the
user can define a derivation number. The pathway browser of our system will produce
derivations until this number or until the set goal is reached. The system includes
statistical tools which show the historical path of all derivations and the concentration
values in flux.

5. APPLICATIONS

The implemented universal metabolic rule allows the formalization of biosynthesis,
gene expression, gene regulation and cell communication process. Regarding biosynthe-
tic processes the before, after, inducer and repressor components are used. For example:
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Fig. 1. Rule editor of Metabolica [20].

enzyme E, will catalyse the biochemical process S, into S,. This can be expressed by:
B=[S,], A=[S;] and E=[E,]. Moreover, we can add any concentration. For example:
B=[15 §,], A=[12 S,], E=[2 E,]. The probability value models the flux of this
biochemical rule, which can be influenced by specific inducer and repressor metabolites
depending on their concentration.

In the case of simple cell communication processes only the before or after component
will be used. By doing this, we obtain the following interpretation: substance A enters
the cell by endocytotic processes. Therefore, we have to define a rule where only the
after component will be assigned by specific substances. Moreover, such processes can be
influenced by specific events, which can be formulated regarding inducer and repressor
components.

Normally, metabolites will disintegrate after a specific time interval. This can be
expressed by a rule which only represents the specific before component. Moreover,
concentration rates and specific influence components can be defined.
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In the case of gene regulation the activity of operons can be modelled easily. If we
choose an operon which represents two genes (S,, S), two operator genes (O, 0O,) and
one enhancer sequence, then this can be expressed by:

B=[RNA-polymerase, ribosome, amino acid, tRNA]
A=[S,,$;], E=[10,,10,] and /=[O, O,].

Therefore, it is easy to develop complex metabolic pathways and complex metabolic
networks using metabolic rule sets. This will be demonstrated by a simple example,
which combines different levels of metabolic processes: Isoleucin biosynthesis (E. coli).

The Isoleucin biosynthesis, a shown in Fig. 3, by E. coli serves as an example of a
simple feedback control system, where the biosynthetic product, Isoleucin, disables the
activity of the enzyme, which catalyzes the most important stage of the biochemical
reaction [1]. It is assumed in this model, that genes produce enzymes directly and
continue with a low probability, denoting the promotor affinity. The same value is used
to model the probability of spontaneous enzyme decay. The complete set of rules can be
given by:

r,= (D, [Threonin-Desaminase], &, @, 0.1),
r2=(®1 IIPlﬂv Qv Q) 01)5
ry=(D, [Reducto-Isomerase], &, 0, 0.2),
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Fig. 3. Isoleucin biosyntheis (E. coli).

ro= (D, [aB-Dihroxy-Dehydrase], &, @, 0.1),

rs= (@, [Transaminase], &, @, 0.1),

rs= ([Threonin-Desaminase], @, @, &, 0.4),

r,=(P), @, D, D, 0.4),

rs = ([Redukto-Isomerase], @, @, @, 0.4),

ro = (Jap-Dihroxy-Dehydrase], @, @, @, 0.4),

rio= ([Transaminase], @, @, @, 0.4),

r. = ([Threonin-Desaminase], [Threonin], [a-Ketobutyrat], [Isoleucin], 0.9),

ri2 = ([a-Ketobutyrat], [a-Acetohydroxy-butyrat], [P], @, 0.9),

ri3 = ([a-Acetohydroxy-butyrat], [aB-Dihroxy-Dehydrase], [Redukto-Isomerase],
@, 0.9),

r« = ({aB-Dibroxy-Dehydrase], [P.], [ap-Dihroxy-Dehydrase], @, 0.9),

ris= ([PJ, [Isoleucin], [Transaminase], @, 0.9).

The meaning of P, and P, is:
P, = a-Hydroxy-B-Keto and P, = a-Keto-$-Methylvalerat.

Our simulation shell allows, for example, the discussion of the delayed effect of sudden
gene-defect. Starting with a start set of [30 Threonin] Fig. 4 shows how Isoleucin
concentration increases and how Threonin developed velocity changes through the first
150 generations. By such graphical analysis, bottlenecks can be detected directly.
Moreover, the produced statistical data in the case of a specific derivation can be
analyzed using common software tools (mathematica).

However, this model allows the simulation of complex metabolic networks and the
grammatical formalization allows the definition and implementation of different lan-
guages. These languages represent specific biological aspects [11]. For example, it is
possible to produce the set of all possible pathways, to produce metabolic pathways
depending on specific conditions (as for example the probability value), to search for the
appearance of specific substances (as for example toxic substances), etc. These languages
are specific tools. Moreover, the user can modify specific cell states or rule states in any
configuration of the simulation and can also control the simulation forward and
backward through the derivation space of this grammar. This is the main assumption for
the interactive feature of our system. For specific metabolic questions specific analysis
tools must be implemented. Therefore, the bottleneck detection is one of the actual
questions and will be discussed in detail.

A metabolic bottleneck is a configuration which signals a high or low concentration
rate of metabolites [3]. The detection of such configurations and metabolites is of interest
because they cause diseases based on genetic defects. In the case of biomedicine, the
detection of such configurations is of increasing interest [4]. However, in the case of
biotechnology DNA recombination needs theoretical tools which allow the simulation of

BN 25-3-C
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Fig. 4. Concentration development within the Isoleucin system.

well defined gene transformations. Therefore, interactive simulation tools are necessary.
Definition 4.10 defines a parallel derivation operator, where any metabolite of the actual
state is able to activate different rules in the same one-step derivation. If such rules go
into action simultaneously high and low concentration rates can be produced by a one-
step derivation.

Example 5.1:

[15 A] is the actual state ze Z and
R={(5A,7B,9,9,1.0),(8A,4D,D,®,1.0),(4A,3C, 2, D, 1.0)}.

All rules are activated by z and the one-step derivation can produce the state
[-2A4,7B,4D,3C].

Important configurations are metabolic states which represent extremely high or low
concentration rates. We have to explain the meaning of this derivation operator.
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Definition 5.1: metabolic bottleneck. Let G=(Z, R, k) be an analytical metabolic
system, A=a, .. ., 4, a derivation, M a metabolite and A, [ specific integer values. Each
derivation is called the (k, [)-bottleneck in configuration i€l. . .n, iff

JaM<I\yM=hwithi=1...n
If M<I(M=h) A is called a negative (positive) (k, D-bottleneck.

A metabolic bottleneck represents a critical concentration rate of one or more
considered metabolites. In order to discuss the cause of these effects we have to
distinguish between two cases.

Case 1: positive bottleneck

(a) A specific rule will produce the metabolite: the simplest example can be shown by
a system which consists of two rules: r;= (?,10A, D, D, 1.0) and r,=(104, D, D, @,
0.2). r; will be activated in any derivation and r, only after four derivation steps.
Therefore, the metabolite A increases permanently.

(b) More than one rule will produce the same metabolite and only a few rules will
consume this metabolite: a simple example of such configurations is: r;= (B, 4 A, @, D,
0.8), ,=(V, 84, E, 3,1.0), ;=(N, 3 A4, @, ,09)and r,=(6 A, H, @, D, 0.5). The
producer rules are superior in numbers and in a higher equent of activation. Therefore,
the metabolite rate will increase permanently.

Case 2: negative bottlenecks (similar to case 1)

The simultaneous action of all activated rules is the basic element of our detection
mechanism. The derivation operator matches the before components of all rules
independently with the metabolites of the actual state and calculates all potential
activations. In nature only a few biochemical reactions can be activated—Dbut our model
allows the visibility of all potential one-step derivations. The simultaneous activation of
some rule combinations will produce the bottleneck and signal the potential critical
configuration of a metabolic pathway.

Therefore, in example 5.1 any possible combination of this rule set is allowed. But the
action of all rules will produce a negative concentration value (negative bottleneck). Our
simulation shell does not continue the simulation using negative components because
these configurations are without any biological meaning. However, each actual state will
be stored (on tape) and all negative components will be changed to 0 (deleted) before
starting the next one-step derivation. The following proposition shows that this formal-
ization of the metabolic processes realizes the complete detection of metabolic bottle-
necks.

Proposition
The metabolic system is complete in the case of bottleneck detection.

Proof idea:

Let G=(S, R) be a metabolic system, where R represents all biochemical reactions of the
metabolic network and S represents the actual start configuration. For each derivation
S,a,,...,a, with neN represents g; a state which represents a finite number of
metabolites. For each metabolite the concentration rate can be calculated by considering
the rate in state a;_, and the concentration rates of the activated rules. This will produce
the actual concentration value x=N If x</ and x= H, where , [eN denotes a specific
threshold, then one of the following cases is true:

Casex<1:

(1) This component was modified by one rule in the previous derivation step.

In this case the bottleneck is located: this component and the historical pathway of this
component, can then be considered by the metabolic system.

(2) This component was modified by more than one rule in the previous derivation step.
In this case the system shows the global bottleneck constellation, which consists of the
component with his historical pathway and all activated rules.

Case x> h: is similar to case x<1.
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6. RELATED WORKS

The simulation of metabolic processes is based on specific models, which can be
classified into the class of abstract, discrete and analytical models. The abstract models
based on automata and logical models which allow the global discussion of fundamental
aspects [7, 8]. The goal of analytical models is the exact quantitative simulation where
the analysis of kinetic features of enzymes is important. The paper of Waser et al. [18]
presents a computer simulation of phosphor-fructocinase. This enzyme is part of the
glycolyse metabolism and catalyses a chemical reaction. Waser et al. model all kinetic
features of the metabolic reaction by computer simulation. This computer program is
based on chemical reaction rules which are described by differential equations. Franco
and Canelas simulate the purine metabolism by differential equations where each
reaction is described by the relevant substance and the catalytic enzyme using the
Michaelis constant of each enzyme [19]. Discrete models are based on state transition
diagrams. Simple models of this class are based on simple production units which can be
combined. Overbeek presented an amino acid production system where a black-box with
an input set and an output set describes a specific production unit [21]. The graphical
model of Kohn and Letzkus [22, 23], which allows the discussion of metabolic regulation
processes, is representative for the class of graph theoretical approaches. They expand
the graph theory by specific functions which allow to modelling of dynamic processes. In
this case the approach of Petri nets is a new method. Reley et al. [24] presented the first
application of Petri nets in the work field of molecular biology. This formalism is able to
model metabolic pathways. The highest abstraction level of this model class is repre-
sented by expert systems [25] and object oriented systems [26]. Expert systems and
object oriented systems are developed by higher programming languages (Lisp, C+ +)
and allow the modelling of metabolic processes by facts/classes (proteins and enzymes)
and rules/classes (chemical reactions). The grammatical formalization is able to model
complex metabolic networks [27, 28]. Based on this formalization the metabolic system
was developed as a specific rule-based system.

7. SUMMARY

In the research field of biotechnology and biomedicine modelling and simulation of
metabolic pathways, gene expression, and complex metabolic networks is of interest.
Numerous models are available which can be classified into abstract, analytical and
discrete models. Nowadays discrete models are based on new methods of computer
science. The disadvantage of these models and simulation shells is that no approach
allows the modelling of complex metabolic networks.

Database systems which represent all sequenced gene structures and/or amino acids of
enzymes are complex. Moreover, many metabolic pathways are known and collected by
Boehringer [5]. In the research field of molecular biology the necessity of integrative
systems is realised [14]. Therefore, Karp developed the first information system which
represents genes (sequences, function), enzymes (amino acids, function and structure),
and metabolic pathways of E. coli [6]. The fixed data representation is the disadvantage
of such systems.

" New methods in this research field are probabilistic networks and grammatical
formalizations {10, 27]. Both concepts are suitable because they represent the natural
behaviour of these systems. Biochemical reactions are defined by rules and the metabo-
lites of the biosystem are represented by the actual configuration. Based on this
formalization we developed an integrative rule based model which allows the modelling
and simulation of complex metabolic processes. Our formalization is based on the theory
of semi-Thue systems with respect to the analyzed features of metabolic processing.
These features are parallel, probabilistic, dynamic and data flow processing. Moreover,
we defined a universal rule which is able to model all different biochemical reactions
using the biochemical terms of notation. Our simulation shell is programmed in C and
works on the SUN workstation [20]. However, this is the first interactive simulation shell
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to be used in modelling complex metabolic networks. This model and simulation shell
can be used to support the discussion of specific biochemical questions. Therefore, this
d to analyse and synthesise metabolic processes. The detection of
genetic or metabolic defects, caused by metabolic bottlenecks, can be performed using
the metabolic system. In the field of biomedicine specific metabolic configurations must
be detected. Such configurations are a sign of genetic defects, which can be repaired by
DNA recombination. In this paper we have presented a derivation operator which is able

system can be use

‘to detect all metabolic bottlenecks [19]. However, the completeness of our strategy is

given.
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