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SUMMARY

We consider the cancer post-treatment surveillance to be represented by a discrete observation
process with a non-zero false-negative rate. Using a simple stochastic model of cancer recurrence
derived within the random minima framework, we obtain parametric estimates of both the time-to-
recurrence distribution and the probability of false-negative diagnosis. Then assuming the false-
negative rate known, we give a nonparametric maximum likelihood estimator for the tumor latency
time distribution. When designing an optimal strategy of post-treatment surveillance, we proceed
from the minimum of the expected delay in detecting tumor recurrence as a pertinent criterion of
optimality. To solve this problem we give a dynamic programming algorithm. We illustrate the
methods by analyzing data on breast cancer recurrence.

1. Introduction

The post-treatment cancer surveillance represents a discrete observation process yielding incom-
plete information on the time of tumor recurrence, i.e., instead of the accurate time of recurrence
only the time of its diagnosis is available. The diagnostic time is usually discretized according to a
specific schedule of examinations. Moreover, false-positives and -negatives of the diagnostic test
may be present. Such samples can no longer be treated as conventional follow-up data with
independent censoring. Similar estimation problems arise when screening programs are applied to a
target population of seemingly asymptomatic persons for the early detection of a chronic disease and
the estimation of its natural history. In recent years, mathematical modeling of screening schedules,
that embody the discrete follow up, has become an accepted alternative to the epidemiological
inference based on proportions. There exists a broad range of literature on parametric and nonpa-
rametric estimation of the disease natural history from discrete observations of the screening type
(Zelen and Feinleib, 1969; Albert, Gertman, and Louis, 1978; Albert et al., 1978; Louis, Albert, and
Heghiman, 1978; Prorock, 1984; Schwartz, 1984; Brookmeyer and Day, 1978; Flehinger and
Kimmel, 1987, 1991). The nonparametric approach is of limited utility, because the available
information is usually too sparse as compared to the number of parameters to be estimated. On the
other hand parametric models that have been proposed are essentially phenomenological, the
majority of them being predominantly concerned with case-control studies with a focus on epide-
miological biases. Nevertheless, the parametric approach to the statistical problems associated with
screening or discrete follow-up studies seems to be most promising and deserving of further
elaboration.

It is obvious that a more reliable and substantive inference from real data on tumor recurrence
might be provided by using biologically based models, rather than by selecting a suitable latent time
distribution among standard parametric families. Surprisingly, such models are a rarity in the
literature on cancer surveillance. In an effort to obtain further insight into the regularities in tumor
recurrence, we proposed a simple stochastic model incorporating parameters that have clear
biological meaning (Yakovlev et al., 1993). In this work, the tumor latency was described within the
random minima framework along the lines of the model of carcinogenesis pI\oposed by Klebanov,
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ﬁ‘ ‘ Rachev, and Yakovlev (1993). The model enabled us to obtain some unobservable characteristics of
- | R breast cancer recurrences, in particular, we estimated the expected number of clonogens, giving rise
| : to early and late recurrences, and their progression rate parameters. Besides, the model makes it
feasible to discriminate between true recurrence and spontaneous carcinogenesis (a new cancer of
the same histological type) on the basis of the temporal characteristics of the tumor latency. As
evidenced by this analysis, the contralateral breast cancer may be interpreted as a pre-existing
subclinical tumor at the time of treatment (Ivankov et al., 1993).,
. When analyzing the data on breast cancer recurrence, we proceeded from the continuous
‘B follow-up assumption and applied the corresponding methods of survival analysis (Kalbfleisch and
'l Prentice, 1980), thereby neglecting the pattern of the diagnostic time discretization. In the present
paper we extend this approach to allow for the discrete follow-up process. The parametric model of
b1 tumor recurrence is briefly described in Section 2. The maximum likelihood estimation of the model
parameters is given in Section 3. This method allows the estimation of not only the numerical
parameters of tumor latency but the value of detection probability as well. The cofidence limits for
the mode! parameters are obtained on the basis of the asymptotic likelihood theory. It is always
desirable to compare the parametric estimate with the nonparametric one. The ordinary life-table
estimator is no longer suitable for this purpose under conditions of the discrete surveillance strategy.
But, assuming that the detection probability for the diagnostic test is known, we develop a
nonparametric estimator for the time-to-tumor distribution which has its origin in the life-table
v methodology.
a Having identified a parametric model of tumor latency, one may formulate the problem of optimal
1IN cancer surveillance as proposed by some authors (Parmigiani, 1991; Tsodikov and Yakoviev, 1991;
- Tsodikov, Yakovlev, and Petukhov, 1991; Tsodikov, 1992). We use the minimum expected delay
1B time approach (Tsodikov and Yakovlev, 1991) and a dynamic programming algorithm for this
purpose in Section 4. In Section 5 an application is presented to the breast cancer recurrence in
patients treated and followed up at the Curie Institute.

v.

”

2. The Model of Cancer Recurrence

In this section we outline briefly the main idea of the parametric model that was proposed earlier
(Yakovlev et al., 1993). At the end of treatment, the cells that will propagate into a newly detectable
i tumor—we call them clonogens—are surviving neoplastic cells capable of giving rise to clonal
growth, and thus to tumor regeneration. The initial number of clonogens, v, is thought of as a
Poisson random variable (r.v.) with expectation 6 (Munro and Gilbert, 1961; Porter, 1980a; 1980b;
Suit et al., 1978; Suit, Shalek, and Wette, 1965; Yakovlev, 1993).

Let X; be a random time for the ith clonogen to produce an overt tumor. By analogy with the
terminology accepted in carcinogenesis studies we call X, a potential progression time. The non- :
negative r.v.’s X, i = 1, 2, ... , are assumed to be independently and identically distributed with a 3
common cumulative distribution function (c.d.f.) F(¢). This assumption is quite natural if the
L . surviving tumor clonogens are in small proportion and wide apart from each other which is likely to
I occur in a treated tumor. The time to tumor recurrence (latent period) can be defined as the random
: minimum ‘
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where X, = + with probability one. Let ® stand for its c.d.f. If v is a Poisson r.v. independent of
the sequence X, X,, ..., the survival function, ®(r) = 1 — ®(¢), for the r.v. U can be obtained
easily:

.

| B(r)= 3 — e[l - F(t)J = e~°F0, (1
; : Pt k! :
|

il The key advantage of expression (1) is to show explicitly the contribution of the two distinct E
i characteristics of tumor growth:-the expected number of surviving clonogens 8 and the rate of their H
I progression described by the c.d.f. F(¢). Estimation of both characteristics is feasible and furnishes
r additional information on the biology of tumor recurrence, thereby offering a more refined inter- E
‘ pretation of observational data. Another advantage is due to the fact that survival function (1)
corresponds to an improper (substochastic) distribution and its limiting value ®(+») = exp(—6) :
. represents the probability of tumor cure (no recurrence) or the surviving fraction. The difficulties b
associated with the estimation of surviving fraction from censored observations within the non-
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parametric framework are well known (Pepe and Fleming, 1989; Cantor and Shuster, 1992). Most

arametric survival models implicitly assume a zero limiting survival probability (Kalbtleisch and
prentice, 1980; Cox and Oakes, 1983; Cohen and Whitten, 1988). The importance of allowing for a
surviving fraction in failure-time models has been recognized by many authors (Miller (1981),
Laurence and Morgan (1989), Laska and Meisner (1992), Yamaguchi (1992), to name a few). Within
the parametric framework, this concept leads us to employing improper distributions in the analysis
of failure time data. Such distributions should not necessarily be of the mixture type as discussed
recently by Yakovlev (1994). The model given by (1) allows for the surviving fraction in a natural
way.

The hazard function A(¢) defined with respect to ®(z) is

A(e) = ofte),

where f is the density of the c.d.f. F. If the progression time distribution F is unimodal, then A(t) has
a maximum. Note that the assumption on the exponential c.d.f. F(¢) should be rejected since that
would correspond to the unrealistic case of a monotone decreasing hazard.

To describe heterogeneity of clonogens with respect to the progression time distribution, we
introduce k distinct types of clonogens with c.d.f.’s Fj(¢), their proportions being equal to ¢,
j=1,..., k. The progression time distribution is represented by a finite mixture

& . P
F(r)y= > cFir), 0<¢ <1, > ¢ =L 2)
j=1

ji=1
This mixture of distributions yields the independent competing risks model for the function &, i.e.,

k

®(t) = [] exp[—0oc,F(0)], (3)

Jj=1

where 6, is the expected total number of clonogens of various types existing in the treated tumor.
The corresponding hazard functions J; are additive and hence

k

A(L) =8y D ¢ file).

j=1

In view of the last formula, it is not suprising that the bimodal shape of the hazard function arises
when recurrences originate from two distinct subpopulations of progenitor cells as shown for the
ipsilateral breast cancer (Ivankov et al., 1993).

Parametric representation of the progression time distribution in formulas (1) and (3) is still an
unsettled problem. In this work, preference is given to the two-parameter gamma distribution by
virtue of its flexibility and the fact that this parsimonious model, very simple as it is, reflects a
multi-stage structure of the process of tumor development. There are two other reasons for such a
choice. First, finite mixtures (2) of gamma distributions are identifiable (Teicher, 1961; Yakowitz and
Spragins, 1968), and so are the competing risks models of type (3) when applied to describing tumors
arising from a heterogeneous population of clonogens. Second, computer-simulations were con-
ducted (Ivankov et al., 1992; 1993) to provide a realistic description of biological processes
underlying tumor promotion and progression at the cellular level: proliferation, differentiation, and
death of tumor cells, along with growth control in neoplastic tissues. A good fit was demonstrated
of a gamma distribution to the samples of progression times generated in this simulation study. For
the reasons given above, we use a gamma distributed progression time in all the computations
presented in Section S.

3. Estimation of Parameters

Let r,i =1,..., n, be the time points at which the patients are examined repeatedly following
treatment. They satisfy the inequalities 7, = 0 < 7, < --+ < 7, < T, where 7, = 0 is the treatment
time and T the planning period of observation. The set S, = {r}"., will be referred to as the
surveillance strategy. Each individual is assumed to follow one and the same strategy of surveil-
lance; otherwise the target population should be stratified with respect to the strategy. A diagnostic
test is characterized by the false-negative rate ¢ = 1 — p, where p is the detection probability. We
assume that q is constant for a given surveillance strategy. Since all patients with the false-positive
diagnosis are usually returned to the surveillance process by the time of the next examination, the
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false-positive rate is set to be zero. The tumor recurrence remains latent until either it is detected or
a censoring event occurs. Let G be the c.d.f. for the time to censoring event that is considered as
an independent competing risk with respect to the recurrence under study. We aggregate all
censored data in each interval [r,_,, 7}, relating them to the point r,_,, for the following reason.
Suppose P(U = 1) =0,i =1, ..., n. If the censoring event occurs within [7;_,, %) then the patient
has no chance to be detected at 7, irrespective of whether this event is prior to cancer recurrence or
not (or whether it is placed at 7;_,). S

At the end of the study, the typical sample is represented by the numbers m;, n;, N, where m; is
the number of patients with cancer recurrence detected at time 7, { = 1, ..., n (recurrence
prevalence at the ith examination); », the number of patients censored in the interval [r,_,, 7,), { =
1, ..., n; N the total size of the population under surveillance.

For any function R, introduce the following notation: R = 1 — R; R, = R(7); AR, = R(7,) —
R(7_,). The log-likelihood for the sample under consideration is

k=1

i-1

Qi+ X ADG T

k=1

1=3 {mlog| >, AF,.Gq'*p |+ nlog|AG,
j=1

k=1

i=1

Let Q, be the probability of tumor detection by the time 7, in the absence of censoring. Then Qo =
1 and

0O = S Abug~p,  i=1,...,n. (5)

k=1
Now it is possible to represent (4) as the sum of two log-likelihoods of the life-table type
1=1,(G) + 1Q),
where

1,(G) = D, (mlogG; + nlogAG,) + N,logG,,

i=1

1:Q) = 3 (mlogAQ; + nlogdi_,) + NuDn»

i=1

anN_ E (mi+ni)7

i=1

and AQ, is given by (5).

To obtain the parametric estimate of the c.d.f. @, one has to maximize 1,(Q) with respect to the
detection probability p and the numerical parameters incorporated in the latent time distribution
given by (3). This problem may be solved by a three-step optimization procedure based on random
search, the algorithm of Davidon, Fletcher, and Powell, and the Zoutendijk algorithm (for details see
Himmelblau (1972)).

To construct a nonparametric estimate for the survival function, we use the invariance property
of the maximum likelihood estimator (MLE). Assume that p is known. For the MLE values A, of

A®,i=1,...,n, the following recurrence relations hold
Ad T
T p(N =)
A m,
AQ, =
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. r .
= - .’A i A -
p(Q qAQ;y)

AQ ( m;.y n; )—1 6
Al =m; - - = s
’-\Qi—l 1- 2k=11 AQk ( )

fori =2,...,n.

Note that should p be estimated using (6) with the same sample, it would be unidentifiable. To see
this, consider another way to derive (6). Take the distribution of individual histories as a multinomal
distribution whose MLE probabilities are equal to the observed frequencies. Then

] o n;
AG|1- S Ad(1-g )| ==

) 5 ™
j=1
fori =1, ..., n. Since (7) contains 2n equations for 22 + 1 unknowns, p cannot be obtained. To

overcome this difficulty, one might substitute the parametric MLE for p in (6).
The expression for AQ; in (6) is just another form of the life-table estimator for ¢ when censored
observations within each interval [r,_,, 7;) are related to its origin. We may write

Qi = H rj
j=1
with

- N - Zial (my + ny)
/ N Z =1 mk+nk)"‘fl

(8)

The denominator of the estimator 7; for the corresponding conditional survival probablhty in (8)
represents the population size at 7,_; rcduccd by the number of those cases that are censored in the
interval [7;_,, 7,) and bring no information on the probability Q

The estimator A®, being a linear combination of AQ; and AQ,_,, its consistency and asymptotic
unbiasedness follow from the properties of the life-table estimator.

4. Optimal Surveillance Strategy

Let A be ar.v. representing the time of recurrence detection conditional on {U < T}. We assume that
A = T, if the tumor recurrence remains latent up to 7, + 0. If the censoring effects are independent
of both the tumor latency and the surveillance process they do not need to be taken into account
when designing the optimal strategy S}, (Tsodikov and Yakovlev, 1991). We now introduce the r.v.

A-U, U<T

b=1"0 wvusr

that describes the delay between the actual recurrence and its detection. We call D the delay time.
Then we are in a position to formulate the optimal surveillance problem as the search for a strategy
S, that provides

minE(D) ' 9)

Sa

for a fixed value of n. The well-known results of reliability theory (Barlow and Proschan, 1964;
‘Beichelt and Franken, 1983) cannot immediately be applied to this problem as they are confined to
the case p = 1. It can be shown (Tsodikov and Yakovlev, 1991) that

T
E(D) = J V(¢) de
0
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where V(¢) = P {an individual is ill at time ¢ but undetected}. Furthermore, when self-detection can
be neglected, problem (9) is equivalent to

minl(S,,), (10)
Sn
where
n+1
I(S,) = Z [Mrk—1 + 0) + O(7ry)]AT,
k=1
and n is fixed. In our particular case
n+1
I(Sn) = 2 ATka—h Ta+1 & T.
k=1

It is natural to consider the values of 7; belonging to the grid {ok}i on the interval [0, T], o =
T/K x> 1-€- o is a time unit in terms of which the time to tumor is registered. By looking over all
possible combinations of {~;} on the grid the solution of (10) can be found. Owing to the structure of
the functional / given by

n+1

I= 2 Cr=1(T1s e+ v 5 Th)s Pr—1 =AT/<Q/<—1
k=1

an exhaustive search algorithm can be constructed in a way that only a part of the functional 7 be
computed at each step. If ¢,_, were dependent only on 7, _, and 7, (which is the case with p = 1),
it would be possible to reduce the exhaustive search procedure to a dynamic programming one. This
might also be an approximate solution when p is close to 1 and 7, _; constitute the most part of the
dependence of ¢,_, on the past as in the example that follows below (Section 3).

Let S, m < n be the optimal solution to the problem

min I(S,,).

0S TS« S TmSTme|
Consider the value I(S},) as a function of 7,,, ;, i.e.,
1(S75) = ¥l Trr)-
Then for S}, ., we have

I(Sr*n+1) = l/’m+1(7m+2) = min{lpm(Tm-b-l) + ¢m+1(‘rb cre s Tm+2)}7 (11)

Tm+1

where 0 < 1, € *** < 7,,,; S T,,,,. Solving (11) with respect to 7, ,, we obtain ¢, .1(7,.,) as a
function of r,,,,. Starting from & = 1, we proceed with (7., ;) until k = n. Setting 7,,; = T in
¥,(T,+1), We obtain the optimal value I* and the optimal strategy S..

At step m + 1, to obtain ¢,,., maximum use is made of the computations at step m. In (11) a
minimum is searched for with respect to 7,,,, ;, the values ¥,,(7,,.,) and Q,, being known. It suffices
to evaluate the only term dependent on 7, ,, AD,,.,, in the expression for ¢,,., according to the
recursive relations

Qm+1 = Qm - AQm+1
AQm—H. = qAQm +PA(Dm+1'

In some circumstances, ethics or other medical reasons such as monitoring side effects might
dictate constraints on the distribution of examinations within the planning period. The previous
procedure can be modified easily as follows. Consider a partition [¢,_,, ), i = 1, ..., k, of the
interval [0, T']. Let the number of examinations in each subinterval be bounded by n;, Zf_, n; = n.
Then the domain 0 < r,,,, < 7,,,, in expression (11) is replaced by

i-2 -1

ti—ISTm-o-lsTm-\\-‘Z’ 1f2”ismsznj"2
j=1 J=1
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and

i-1
Lt S Tma1 S ifm=3 n -1, ni-y 21
j=1

for some [ < k.

5. Example: Breast Cancer Data
We apply the method to analyze data on breast cancer recurrence for 877 patients treated and
followed up at the Curie Institute from 1960 to 1988. Description of the subcohort is given by
Fourquet et al. (1989). The data include local failure times and the censoring index values. Since in
the majority of cases the recurrence in the treated breast is not accompanied by or occurs prior to
that in the contralateral breast we confine ourselves to studying surveillance of the ipsilateral breast
cancer recurrence. As mentioned in Section 2, we use gamma distributions with shape parameters
- and scale parameters B;,j = 1, ..., k, to specify the progression time distributions Fj(¢) in the
survival function (3). To simplify the computations, the search for the values of «; that maximize the
log-likelihood 1, is limited to the set of positive integers. For the mean number of clonogens of the
jth type we use the notation 6, = ¢;6p,j =1, ..., k.

Proceeding from the assumption that the data represent the regular follow-up study, we identified
model (3) for k = 2 (Ivankov et al., 1993), i.e., for two competing subpopulations of clonogens giving
rise to the tumor recurrence (Table 1). The goodness of fit test developed by Hjort (1990) for
censored observations does not reject the null hypothesis at a significance level of .1. After the
treatment, the current practice of recurrence surveillance at the Curie Institute is to examine the
patients:

—once per semester for the first 4 years;

—once per year for the next 6 years; and

—once every 2 years for the remaining period.

For this strategy, the estimate of the false-negative rate appears to be § = .2 which is consistent with
the estimate obtained by other means (Day and Walter, 1984).

Table 1
Estimates of the model parameters for discrete surveillance and regular follow up. Data on the
ipsilateral breast cancer recurrence.

Surveillance strategy Follow up
Asymptotic . Asymptotic
confidence confidence
Parameter Estimate interval Estimate interval

8, .13 .09, .17 11 .08, .14
o 3.00 1.73, 4.27 4.00 3.52,4.48
B .051 .018, .084 076 .064, .088
6, .87 .00, 2.86 1.07 .00, 3.19
o 11.00 8.31, 13.69 5.00 1.33, 8.67
B .038 .013, .063 .012 .000, .027
D : .80 .77, .83

The resulis in Table 1 show that, when the discrete surveillance is taken into account, the
Parameter estimates describing the rapidly evolving subpopulation of clonogens differ but slightly
from those obtained under the regular follow-up conditions. The discrepancy between the two sets
of estimates is somewhat more pronounced for the slowly evolving subpopulation, but these
estimates are expected to be less reliable because of the censoring effects. Shown in Figure 1 are
Parametric and non-parametric estimates of the time-to-recurrence distribution ®(z). Both estimates
are constructed for the currently practiced surveillance strategy consisting of 19 examinations.

Using the estimated c.d.f. ®(¢), the optimal strategy can be computed for the same number of
tests. Table 2 shows a 33% reduction in the expected delay time or alternatively a similar delay as
In the current surveillance practice with 13 instead of 19 examinations. The parametric estimate of
the hazard function based on model (3) for k = 2 is depicted in Figure 2. One can see in this figure
thﬁt the tests comprising the optimal surveillance tend to be more frequent when the hazard is high.
Iis generally believed that the early recurrence of breast cancer carries poorer individual prognosis




444 Biomeztrics, June 1995
.35,

.2 54

Probability
ny

.154

.05+

O T T T T Y  § T T LA T T T T T T T T T T T Y T T 1
0 20 40 60 80 100 120 140 160 180 200 220 240 260
time (months)
Figure 1. Parametric and nonparametric estimates of the time-to-recurrence distribution
function.

Table 2
Optimal strategies for the breast cancer surveillance

Time points {r;}{=7 for examination of
patients (months)

Currently used Optimal Optimal
strategy strategy strategy
Test n =19 n=19 n=13
1 6 24 30
2 12 35 45
3 18 45 61
4 24 56 79
5 30 67 101
6 36 80 127
7 42 94 152
8 48 111 171
9 60 129 187
10 72 145 201
11 84 159 213
12 96 171 225
13 108 181 T 240
14 120 190
15 144 199
16 168 209
| 17 192 219
| 18 216 229
| 19 240 : 240
Expected delay time 4.10 2.75 3.93
(months)

than the late one. The proposed approach, in its present form, does not allow for a dissimilar relative
importance of detecting early and late recurrences. This might be an issue for future research.
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Figure 2. Surveillance strategies and parametric estimate of incidence rate. Dots on the upper
line represent the surveillance times as currently practiced at Institut Curie; dots on the lower
line represent the optimal surveillance times based on the parametric model of breast cancer
recurrence. The curve is the parametric estimate of the incidence rate.
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RESUME

Nous considérons la surveillance apres traitement d'un cancer comme un processus d’observation
discret associé a un taux de faux negatifs non nul. A I’aide d'une modélisation stochastique simple
du risque de recidive du cancer, dérivée d'un schema de randomisation aléatoire, nous obtenons
simultanément la distribution des délais de recidive et la probabilité d'un diagnostic faussement
négatif. Partant alors d'un taux de faux negatifs connu, nous proposons un estimateur non param-

étrique du temps de latence tumorale base sur la méthode du maximum de vraisemblance. Pour

établir une stratégie optimale de suivi apres traitement, nous proposons comme critére d'optimis-
ation pertinent la minimisation du retard a la detection d'une recidive tumorale. Pour résoudre ce
probléme, nous utilisons un algorithme de programmation dynamique. Les méthodes sont illustrées
par un exemple portant sur les récidives de cancer du sein.
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