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Summary

This paper is concerned with some versions of a stochastic model of aging proposed recently by
TYURIN et al. (1993). In contrast to the commonly used Gompertz-Makeham approach, the model
yields a bounded hazard rate, thereby providing a better description of survival of old individuals in
a population. Depending on plausible biological assumptions to be tested, only a few special cases of
the basic model appear to be useful in experimental data analysis. We report the results of their
application to experimental data on animal longevity obtained in a follow-up study. When inter-
preted in terms of the model parameters, the data suggest drastically dissimilar patterns of aging for
female versus male rats.

Key words: Aging; Life-time distribution; Random minima; Bounded hazard;
ML estimates; Goodness of fit testing.

1. Introduction

Over a long time, the Gompertz-Makeham formula has been practised as
a common, if not unique, means of survival data analysis in gerontological
studies (GoMPERTZ, 1825; SACHER, 1956; 1977; SacHer and Trucco, 1962a;
1962b; HirscH, 1982; BOXENBAUM et al. 1986; ANisiMov, 1987; HonDaA et al,
1993, to name a few). Much like the Gompertz model of tumor growth (Q1 et al,,
1993), the Gompertz-Makeham lifetime distribution is purely phenomenological
and its parameters are not related to any specific mechanisms of aging. To the
best of our knowledge the only attempt that have been made to justify the
distribution theoretically was due to Bass et al. (1989). Proceeding from hypothe-
tical life-prolonging and life-shortening cells in every organism and describing
their interaction by a generalized Volterra-type competitive exclusion, Bass et al.
gave a deterministic substantiation of the Gompertz distribution for the life
length of aging individuals.

A new stochastic model of aging was recently developed by TYURIN et al.
(1994) within the random minima framework. The model offers interpretation of
experimental or epidemiological observations in terms of accumulation and
expression of intracellular lesions caused by environment or intrinsic genetic
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program. For testing the goodness of fit, a Kolmogorov-type statistical test for
composite hypotheses was introduced by TyuUriN et al. (1994) with special
reference to the proposed family of lifetime distributions. The main line of
reasoning in this work was similar to that in the earlier proposed model of
carcinogenesis (KLEBANOV et al., 1993), which seems to be quite natural in view of
a profound connection between aging and cancer (DILMAN, 1981; ANISIMOV,
1987). Along the same lines a model of hormesis in relation to longevity was
developed by YAKOVLEV et al. (1993). It is the processes of lesion repair,
operating at the molecular and cellular levels, that were assumed to be responsi-
ble for the life-prolonging effect of some agents which are harmful at higher
doses. It transpired that the model could be instrumental in giving further insight
into the hormesis phenomenon as evidenced by its application to the analysis of
some published data on the effect of prolonged irradiation and of procaine on
animal longevity (YAKOVLEV et al., 1993).

In Section 3 of this paper, we consider some simplified versions of the model
by TYURIN et al. (1994) which are feasible for application to experimental data
analysis. For completeness sake a description of the basic model is given in the
next section. Sections 4 and 5 deal with problems of the model application.

2. The Model

The model is based on the following substantive assumptions:

(1) The primary event in the process of aging is the formation of an intracellu-
lar lesion which is potentially lethal, i.e., in the long run it is capable of resulting
in death of the organism. Such primary events occur at random time instants and
their sequence in time may be thought of as a point stochastic process. We specify
this process by a Poisson one with intensity 4,(¢), so that the number of lesions
vo(T) accumulated by time T is a Poisson random variable with expectation
T

_[io(t)dt. The rationale of the Poisson character of the process of lesion

tgormation lies in the well-known asymptotic properties of the superposition of
a large number of independent point processes (Cox and IsHam, 1980, p. 109).
(i) At present there is hardly a shadow of doubt that cells are endowed with
a capacity to repair radiation and chemical injury, including injuries that result
in cancer induction (AINSWORTH, 1982; RAAPHORST et al., 1990; ZHU and HILL,
1991). A potentially transforming damage repair is taken into consideration
within the framework of a Markovian-type model of carcinogenesis developed by
Kopr-ScHNEIDER and PORTIER (1991). It is natural to assume participation of the
same repair mechanisms in the elimination of background lesions as well. All
primary lesions are subject to repair processes but some of them remain
unrecognized by the repair system and, consequently, unrepaired. Some of the
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lesions happen to be misrepaired due to errors in the functioning of repair
mechanisms (ToBias et al., 1980; ALBRIGHT, 1989; SacHs et al., 1990). We do not
distinguish between unrecognized and misrepaired lesions but consider them as
a single pool of misrepaired lesions. The existing experimental evidence on the
temporal characteristics of enzymatic repair of lesions (ToBias et al, 1980;
YAKOVLEV and ZORIN, 1988; FRANKENBERG-SCHWAGER, 1989) in particular indi-
cates that this process can be considered to be effectively instantaneous as
compared with the typical life lengths measured in mortality studies. Therefore,
we assume that, unless there is exogeneous stimulation of repair systems, each
lesion is repaired or misrepaired immediately after its origination. The repair
effect is modeled as the specific thinning operation (see Cox and IsHam, 1980,
p. 98) on the original Poisson process: with probability 1 — p each point (lesion) is
deleted independently of the others and of the whole point process. The probabil-
ity p, in a general case, is allowed to be time dependent, i.e. p=p(t). As a result
we have a thinned Poisson process of intensity A(¢)=p(t) 4,(¢) to represent the
misrepaired lesion formation.

Remark 1. More generally, the misrepair probability is expected to be a non-
decreasing function of the rate A,. One way to specify this function is to consider
the functioning of the repair system as the M/M/n queue with losses (TAYLOR and
KARLIN, 1984). If 4, is constant in time, the stationary probability for the lesion
not to be served by the repair system (the probability of “losing a customer”) is
given by the well-known formula

(Ao/to)"/n!
Y (Ao/uo) k!

p.:

K

where u, is the service rate, and n is the number of servers or repair units. This
parametrization is of more direct interest in studies on radiation carcinogenesis,
especially in a quantitative description of the dose-rate effects (KLEBANOV and
YAKOVLEV, 1993); it is of little consequence for our further considerations.

(i11) The time from the i-th lesion formation to death of the organism eventual-
ly caused by this lesion is a random variable X;. We call X, the potential
progression time. The nonnegative random variables X;, i=1, 2,..., are assumed
to be independent and identically distributed with the common cumulative
distribution function F(x). Denote v(t) the number of misrepaired lesions accu-
mulated in the organism by the time ¢, and assume that the random variable v(z)
is independent of the sequence X; X,,... The latent period is defined as

v(t)
U= A (E+X), (1)
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where E, is the time of i-th lesion formation given that this time is less than t,
/\ is the minimum symbol, E; and X, are mutually independent and
E,+ X,= + o (no lesion) with probability one.

Remark 2. The notion of the potential progression time should not be taken
too literally. It does not refer to the duration of any specific lethal disease but
serves to model the temporal organization of lesion expression in a relatively
facile way. The assumption on the identical distribution of X; can be weakened
by considering more than one cause of death within the competing risks
framework. This extension, however, requires an additional information on
causes of death which is not always available in the survival data.

The above assumptions enable us to derive the distribution function G for the
random variable U given by (1). Indeed, the corresponding survival function,
G =1— G, can be expressed by the formula of total probability as follows

t k
( [ A(x) dx> [
0 —f i(x) dx

G(t)=Pr{U=t}= i R (1) px e s , 2)

where R is the conditional survival function for the sum E;+ X, given v(t) = k.
Now we can use the following property of the Poisson process (see, Cox and
IsHAM , 1980, p. 46): given that there are exactly k points in the interval (0, t],

these points are independent and identically distributed with density
t

Mx)/ [ A(u) du, x € (0, t). Then, for the distribution R=1— R we have

Substituting this expression for R in (2), we finally obtain

G(t)=exp{—j A(x) F(t —x) dx}. (3)
0

This formula describes the survival of individuals in a follow-up study starting
from the date of birth. Its key advantage is to show explicitly the contribution of
the two distinct characteristics of the process of aging: the rate of formation of
intracellular lesions, A, and the rate of their subsequent progression described by
the function F.
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Consider the hazard function, h(t), defined for the survival function given by

(3),

h(t)=\ A(t—x) dF (x). (4)

O e

Assuming F(0)=0, it is easy to verify that h(t) is a bounded (from above)
function of time if the rate A is bounded, the latter assumption being natural
from the biological standpoint. This restriction excludes, amongst others, the
Gompertz hazard function which is unlimited at large t. Assuming that A(¢) has
a finite limit and applying the simplest Tauberian theorem (Cox, 1962), one can
see that the survival function G(¢), given by (3), is asymptotically (as t — + o0)
exponential. Therefore, this function is expected to provide a better description of
the survival of old individuals in a population than the Gompertz-Makeham
distribution (see GAVRILOV et al., 1983; GaVRILOV, 1984; GAVRILOV, PARKIN and
HRrisaNov, 1984; for discussion). This property will hold true for all the versions
of model (3) considered in the next section.

Using standard probabilistic argument, it is easy to show that the conditional
survival function H(t, a) for the random variable U given U>a, a>0, can be
expressed as follows

H(ta—exp{ j/t F(t—x)dx} (5)

The last expression for H(t, @) describes survival of the animals sampled at
a prescribed age a. This experimental design is fairly typical for the studies on
animal longevity.

3. Special Cases

In order for the model of aging to be applied to real data, it is necessary to
specify the function A(t) in expression (3). Since there is no way to measure the
quantity A(t) by an experimental approach or to specify its general parametric
form on independent theoretical grounds, we will consider some special cases in
which the estimation problems appear to be feasible.

Model 1

If A(t) is constant in time, we have the following special case of formula (3)

G(r)=eXp{—1fF(x) dx}. (6)
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The corresponding hazard rate,
h(t) = AF (1),

is a nondecreasing function bounded from above.

Remark 3. To describe populations, which are nonhomogeneous with respect
to the parameter A, a randomized version of model (6) can be constructed by
specifying a pertinent prior distribution. Most convenient for this purpose are the

gamma distribution and %—-stable distributions (KLEBANOV et al., 1993).

Model 2

The structure of Model 1 is amenable to the incorporation of competing risks. In
particular, if there are two major causes of death in a given population, e.g.
pyelonephritis and cancer as was documented for mice (LORENZ et al., 1954),
then, proceeding from the independent competing risks model (DAvID and
MOESCHBERGER, 1978), one may write

G(t):exp{—il }Fl(x) dx — A, jt'Fz(x) dx}. (7)

In this model, the potential progression time distribution is represented as
a two-component mixture of the distributions F; and F,. Clearly, it is advisable
to apply model (7) when the components F, and F, are sufficiently distinct from
one another. Further detailing of model (7) by introducing an additional compet-
ing risks tends to render it impractical for estimation purposes.

Model 3

The assumption on the constancy of the rate A(t) for the entire lifetime may
appear to be rather restrictive. TYURIN et al. (1994) presented some evidence
against this assumption. As follows from their analysis of published data on
longevity of mice and rats, the rate of lesion formation is not sustained at
a constant level throughout life, though in some cases its variations with age can
be considered negligible. In consonance with this conclusion are some independ-
ent indications in the literature on an age-related decline of the activity of repair
enzymes (ANISIMOV, 1987). YAKOVLEV et al. (1993) proposed a parsimonious
model allowing for that regularity in the context of modeling the hormesis effect.
In like manner, a stepwise increase of the rate 4 at some nonrandom time instant
t, >0 can be introduced in formula (6). As a result, we have one more version of
the basic model under consideration

LY
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G(t)zexp{—il [ F(x) dx}, t<t,,

0

C_?(r)=exp{—/t1 jF t—x)dx—/7jF t-~c)dx}, t>ty,

o

where 4, <4,.

Model 4

The model structure will retain sufficient simplicity if we introduce an age-
varying rate of lesion formation by specifying the function A(¢) in the form

At)=c(l—e™7,

where ¢ and y are positive constants. In this case

G_(t)zexp{—cj(l-e"”)F(t—x) dx}. (8)

Formula (8) reduces to Model 1 if y — + co. This fact is useful in evaluating the
evidence in favor of Model 1.

4. Estimation Procedure

The method of maximum likelihood provides a pertinent procedure for obtaining

‘ ) estimates of unknown parameters in the above considered parametric models.
The method is of particular assistance in the accomodation of censored data in
modern survival analysis (KALBFLEISCH and PRENTICE, 1980). In an illustration
that follows, we will be concerned only with complete samples, and the classical
chi-square test will be used for testing the goodness of fit. Therefore, the
estimation procedure will be based essentially on the multlnomlal form of the
likelihood function. ‘

To put the model to practical use, it remains to specify the potential progres-
sion time distribution. In this work, preference is given to the two-parameter
gamma distribution by virtue of its flexibility and clear meaning of shape and
scale parameters, hereafter denoted by « and S, respectively. These parameters
are related to the mean, 7, and the variance, ¢, of the potential progession time
as follows: 7= o/, 0% =a/B% The gamma distribution density is of the form
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u=>1, x>0,

f(x)=
0 , x <0.

Another reason for such a choice is that finite mixtures of gamma distributions
are identifiable (TEICHER, 1961; YAKOWITZ and SPRAGINS, 1968), and so are the
competing risks models of type (7).

To maximize the log-likelihood with respect to the model parameters, we use
the following 3-step nonlinear programming procedure:

® Step 1: apply the random search algorithm (ZHIGLIAVSKY, 1992) that requires
the specification of a domain A4 containing the overall maximum but not
a starting point for the optimization.

@ Step 2: apply the Davidon-Fletcher-Powell algorithm (HiMMELBLAU, 1972)
with the initial points provided by step 1. If the boundary of the set A is
attained then go to step 3, otherwise step 2 gives the final solution.

e Step 3: apply the Zoutendijk algorithm (HiMMELBLAU, 1972) allowing for
constraints which specify A.

To avoid computational difficulties, the search for the estimate of « can be
limited to the set of positive integers. The procedure is described at length in the
work by HOANG et al. (1995).

5. Application

We apply the model to analyze data on lifetimes of white outbred LIO rats (bred
in the N.N. Petrov Research Institute of Oncology, St. Petersburg) followed from
an age of 100 days up to natural death. Some animals were sacrificed by ether in
agonal condition. 7 groups of females (573 rats in total) and 4 groups of males
(462 rats) were under observation. After weaning, male and female rats were kept
separately in standard polypropylene cages (5 per cage). They were given natural
meal, standard lab chow and tap water ad [ibitum. Light regime was 14h
light/10 h dark, room temperature + 22 +2°C.

The results of the goodness of fit testing for female rats are shown in Table 1.
Obviously, these results favor Model 1 much more than the other models. In all
cases the parameter y formula (8) tends to take very high values, thereby showing
that Model 4 reduces to Model 1. This may be considered as an additional
evidence in favor of Model 1. Hence, one may conclude that the hypothesis on
constancy of the rate A is consistent with the data for female rats. The estimated
values of the model parameters are given in Table 2. As evident from this table,
the parameter values vary widely with different samples of female rats.

L)
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Table 1

Goodness of fit for different versions of the model. Female rats.
Sample sizes and significance level values are given in parentheses.

Model
Group of
animals
1 2 3 4

1 (n=68) + — — -
(p>0.05)

2 (n=286) + — + +
(p>0.3) (p>0.05) (p>0.05)

3(n="75) + — —_ —
(p>0.1)

4 (n=76) + — — -
(p>0.05)

5 (n=285) + — + +
(p>0.3) (p>0.1) (p>0.2)

6 (n=66) + — — -
(p>0.05)

7 (n=117) 4 _ _ _
(p > 0.05)

In contrast to the results obtained for female animals, it is Model 3 that
provides a better description of the data for male rats (Table 3). For one example,
the estimated survival functions for Group4 of male rats corresponding to
Model 1 and Model 3 are depicted in Fig. 1. There is a marked discrepancy
between the two estimates. Hence, the most likely speculation is that a sharp
increase in the rate of lesion formation occurs at some age t, in male rats. Note

Table 2
The model parameters for female rats.
Estimates of parameters
Group of animals '
A T G
1 27 4214 2980
2 37 704 497
3 50 1555 1100
4 4 347 142
5 6 378 154
6 19 1428 824
7 25 1592 919
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Table 3

Goodness of fit. Male rats. :
Sample sizes and significance level values are given in parentheses.

Model
Group of
animals
1 2 3 4
1 (n=218) K + + n "
(p>0.2) (p>0.2) (p>0.2) (p>0.1)
2(n=71) - — — —
3 (n=286) — — + -
(p>0.3)
4 (n=87) — - + o C ‘
(p>0.3)
Table 4
The model parameters for male rats.
Estimates of parameters
Group of
animals
Ay Ay— Ay ty T 15
(weeks)
1 0.091 0.335 75 194 112
2 0.022 0.575 94 , 61 35
3 0.025 2.235 91 83 34
4 0.021 1.518 87 76 29
1 1
:
S 2
Bos
:

0 20 40 60 80 100 120 140 160

Time (weeks)

Fig. 1. Parametric estimation of the survival function based on Model 1 (curve 1) and Model 3

(curve 2). Male rats of Group 4.
Stepwise curve represents the nonparametric (life-table) estimate.
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Fig. 2. Parametric estimation (Model 1) of the survival function (A) and the hazard rate (B)
for male rats of Group 1.

that the estimated values of ¢, are virtually the same for the four groups of male
animals (Table 4). On the other hand, none of the models is consistent with the
observations for Group 2, but all of them are in good agreement with the data
for Group 1 of male rats. Since the latter group is the most numerous one, it may
well be heterogeneous and this is in line with a high significance level provided
by the competing risks model (Model 2). The estimated survival and hazard
functions for Group 1 are shown in Fig. 2. Although the chi-square test rejects
Model 3 for Group 2 of male rats, this model parameters appear to be fairly close
to those for the other groups (Table 4). As follows from Table 4 the parameter
estimates for males vary but slightly as compared with their variations observed
for female rats (Table 2). Besides, male rats tend to have much lower rates of
lesion formation (higher efficiency of the repair system?) and yet much shorter
potential progression times than is the case for females. In this connection it is
worth noting that the life-prolonging effect of chronic irradiation and of procaine
was documented for male but not for female animals (LORENTZ et al., 1954;
ASLAN et al.,, 1965). This analysis, tentative as it is, indicates that the distinction
between principal characteristics of the aging process in males and females is by
no means sharp and may be attributed to dissimilar values of the model

parameters.
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