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This article investigates the following basic question: in the relatively stable molecular en-
vironment of a vertebrate body, can a dynamic idiotypic immune network develop a natural
tolerance to endogenous components? Our approach is based on stability analysis and computer
simulation using a model that takes into account the dynamics of two agents of the immune
system, namely, B-lymphocytes and antibodies. We investigate the behavior of simple immune
networks in interaction with an Ag whose concentration is being held constant as a function
of the connectivity matrix of the network. The latter is characterized by the total number of
clones, N, and the number of clones, C, with which each clone interacts. The idiotypic network
models typically become unstable in the presence of this type of Ag. We show that idiotypic
networks that can be found in particular connected regions of NC-space show tolerance towards
auto-Ag without the need for ad hoc mechanisms that prevent an immune response. These tol-
erant network structures provide dynamical regimes in which the clone which interacts with
the auto-Ag is suppressed instead of being excited such that an unbounded immune response
does not occur. Possible implications for the future treatment of auto-immune disease such as
Ivig-treatment are discussed in the light of these results. Moreover, we propose an experimental
approach to verify the results of the present theoretical study.

1. Introduction simplest immune networks and have proposed a so-
lution [Calenbuhr et al., in press; hereafter referred
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and only secondarily to a defensive role [Varela &
Coutinho, 1991, 1993; Tauber, 1994]. Yet, also in
the classical clonal selection view of the immune
system natural tolerance is a contended issue. In
recent years the interest in the understanding of id-
lotypic networks has produced a number of models
and significant insights [Varela & Coutinho, 1991;
De Boer & Perelson, 1990]. In these models the dy-
namics (of soluble and cellular fractions) and meta-
dynamics (turnover of clones and new recruitment)
of the network have been emphasized. Until re-
cently, the network’s interaction with an external
antigen (Ag) has been studied with several degrees
of sophistication, always considering the Ag as an
infectious agent being controlled by the network dy-
namics [De Boer & Hogeweg, 1989; Neumann &
Weisbuch, 1992a,b; Weisbuch et al., 1993]. How-
ever, the case of continuously present Ag (such as
those found on tissues and in the somatic environ-
ment), a situation corresponding to the one found
in auto-Ag and possibly in auto-immune disease,
has received much less attention. This problem has
been treated so far mainly with simplified cellular
automata [Stewart & Varela, 1991] and has been
dealt with in full dynamical detail for the first time
by Detours et al. [1994] and CBSV.

In general, it is believed that sophisticated and
perhaps redundant control mechanisms avoid that
the immune system attacks molecules of the host
organism. It is well known that large interaction
networks have often coexisting dynamical regimes
with sometimes largely differing dynamical proper-
ties. For example, a system can have several coex-
isting chaotic attractors or chaotic attractors coex-
isting with oscillatory ones. A question of primary
importance then is whether tolerance towards auto-
Ag can be achieved by the diversity of dynamical
configurations or regimes (the so-called dynamical
repertoire!) that the model can display when some
stable auto-Ag? are considered. That is, can bifur-
cations of the system give rise to branches of differ-
ent stability properties to attain bounded response
of a perturbed clone?

'We use the term “dynamical repertoire” to refer to all dy-
namical regimes that the system can have. Hence, dynam-
ical repertoire must not be confounded with the standard
use of repertoire, repertoire size etc., commonly used in
immunology.

By a stable auto-Ag we understand an Ag that can stimulate
the IS and whose concentration is always being held constant.

In fact, in a recent study (CBSV) it was shown
that in a simple three clone immune network, tol-
erance can indeed be found for certain dynamical
regimes. The different types of dynamics are a func-
tion of the connectivity of the idiotypes. There are
only two possible connectivity configurations in the
simple three clone network. One of them leads to
a chaotic regime which is characterized by the dy-
namical equivalence of the clones. It was shown that
the interaction of the system in this regime with a
continuously present and constant Ag causes a de-
generation of the chaotic attractor into an attractor
in which the clones are no longer equivalent, namely
a periodic one. Instead of launching an unbounded
immune response, the system is reciprocally stabi-
lized with the constant Ag. The other dynamical
regime, a limit cycle becomes unstable when cou-
pled to an auto-Ag.

These results suggest to consider the problem
of natural tolerance not in the framework of a the-
ory that relies on detailed cellular and molecular
mechanisms to prevent auto-immunity, but instead
to focus primarily on network connectivities and the
corresponding dynamical repertoire. CBSV studied
only a very simple prototypic network. In this pa-
per we extend the analysis to larger networks that
allow for a multitude of different dynamical regimes.
We examine their behavior in the presence of a con-
tinuously present Ag with respect to their stability
properties.

Biological networks and networks of oscillators
have received much attention in recent years, see for
example [Tsang et al., 1991] and references therein.
Researchers were mainly interested in the behav-
ior of coupled oscillators as a function of system
parameters such as coupling strength and distribu-
tion of natural frequencies [Matthews et al., 1991].
The present study differs in respect to these works:
the immune network studied here is not made up of
individual oscillators. Only when two basic build-
ing units are coupled together, the system starts
to oscillate. Moreover, here we are interested in
the impact of structural changes of the connectiv-
ity matrix on the system behavior and not that of
parameter values.

The paper is organized as fallows. In the second
section we present a brief description of our model
and discuss its behavior as a function of network
connectivity. In the third section we briefly describe
the behavior of the basic three clone system in the
presence of auto-Ag and extend this discussion to
larger networks.




2. The Model

2.1. Basic model without interactions

The model was originally proposed by Varela et al.
[1988] and discussed in [Varela & Stewart, 1990;
Stewart & Varela, 1990]. We have since used a
slightly modified version of this model, by the use
of differently shaped activation functions. Despite
its simplicity the model shows a rich dynamical be-
havior, notably the occurrence of oscillations and
chaos [Bersini, 1992; Calenbuhr et al., 1993; Bersini
& Calenbuhr, 1995; Calenbuhr & Bersini, 1993, also
in preparation]. Similar models have been inten-
sively studied by de Boer et al. [1993a,b].

Our model describes the interactions between a
soluble and a cellular compartment of variable V-
regions, whose behaviors are described by the fol-

.lowing differential equations:

df;

7 = —kyoifi — kafi + k3 mat(o;)b; (1)

db; .

) = —ky4b; + ks prol(ci)bi + ke i=1,...,m;
(2)

where f; denotes the concentration of the ith type
(clone) of antibody, and b; the population of the ith
type (clone) of B-lymphocytes. The first term in (1)
describes the kinetics of the formation of antibody-
antibody complexes, the second term accounts for
the rate of inactivation of Ab’s and the third term
describes the production of Ab’s by B-cells (B-cell
maturation). The first term in (2) accounts for the
death-rate of B-cells, the second term for the prolif-
eration of B-cells and the third term represents the
production of B-cells in the bone marrow.

The antibody-antibody and antibody-B-lym-
phocyte interactions are specified by the connectiv-
ity matrix M, whose entries m; ; determine whether
(antibody- or lymphocyte-) species 7 interacts with
species j and define the function, o;, which is called
the field:

j=n
oi =) mi;f; (3)
j=1

We will restrict the analysis here to Boolean
affinities, such as the ones obtained empirically by
Eliza measurements [Stewart & Varela, 1989]: an
entry “1” in the connectivity matrix (CM) indicates
a threshold affinity between clones f; and f;, while
a “0” indicates the absence of affinity. For exam-
ple, a situation where all members react only with
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Fig. 1. Connectivity matrices and the corresponding inter-
action scheme for the 3-clone open chain case (above), and
the 3-clone closed chain case (below).

their nearest neighbors results in a CM in which
all elements are zero except for the direct neighbor
elements of the diagonal. We will refer to that case
as the open chain. Adding non-zero corner elements
to this matrix is equivalent to closing the chain of
interaction case (see Fig. 1 for the 3-clone case):

In the simple 3-clone case only first nearest
neighbor interactions are possible. For a larger num-
ber of interacting clones, however, it is also possible
to have long-range interactions. Note that short-
range or long-range interaction in our case does not
refer to any chemical or physical property of the
interacting Ab’s. First, second, third etc. nearest
neighbor interactions are all of the same strength
in our case. The chosen terminology serves only to
label the clones and their interaction symmetry.

There are three parameters that characterize
the isotropic connectivity matrices used in our case.
First, the number of clones, second the maximal
number of nearest neighbor interactions in a net-
work and third, open or closed chain constellation,
e.g., 5/30 would designate a network of five clones
with up to three nearest neighbor interactions and
an open chain constellation (see Fig. 2).

The distinction between open- and closed-chain
cases may appear artificial and superfluous. How-
ever, we have several reasons to stick to this nomen-
clature. In many cases, the behavior of larger net-
works can be related to properties of the 3-clone
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Fig. 2.
case (below) of a 5/3 network.

cases. This is particularly true for the phenomenon
of network fragmentation in which a large network
shows the behavior of several smaller and indepen-
dent non-interacting networks, which will be briefly
touched upon in the next paragraph (unpublished
results).

The functions Mat and Prol determine how B-
cells mature and proliferate upon activation:

In(o/ pm)

2
Sm }

In(o:/ 1) }2

Sp

mat(o;) = exp — { (4)

prol(o;) = exp — { (5)

The parameter values for the results pre-
sented here are as follows: k; = 0.0016[conc=1d~!;
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Connectivity matrices and the corresponding interaction scheme for the open chain case (above) and closed chain

ky = 0.02[d71]; k3 = 2.0[d™Y); kg = 0.1[d~1]; ks
0.2[d7"); ks = 0.1[d™"); m = 80[conc?; s, = 0.5;
tp = 120[conc?]; s, = 0.5.

The discussion in this paper is based on a sys-
tem dynamics in which the number of clones and
their connectivity remains constant as a function of
time, i.e. we study systems without meta-dynamics.
The basic behavior of the system including meta-
dynamics has been discussed in Stewart & Varela
[1991] and Detours et al. [1994].

2.2. Coupling with an auto-Ag

The coupling of an Ag whose concentration remains
constant is the simplest case to represent an autolo-
gous antigen. From the mathematical point of view




it introduces the least modification at the level of
the equations. For this case (3) is replaced by

k=n j=n
oi= Y LixAge+ D mijf; (6)
k=1 j=1

whereby Agy denotes an auto-Ag coupled to the
network via the interaction matrix 1. In the fol-
lowing discussion we will drop all indices with the
understanding that there is always only one auto-
Ag present.

2.3. Computational aspects

The system’s equations were integrated using a
fourth order Runge-Kutta method with adaptive
stepsize. The solutions with auto-Ag are different
from the solutions without auto-Ag as the coupling
-of an auto-Ag to the network leads to a new dynam-
ical regime. We have tried to find as many attrac-
tors as possible for a specific connectivity matrix
by performing computer simulations using random
starting values.

As will be discussed below, there is a critical
range of auto-Ag that can lead to an unbounded
immune response. This range is in general defined
by um < [Ag'] < pp. Moreover, in many cases
stability and instability depend on which particu-
lar clone is perturbed. It was therefore necessary
to run simulations for various auto-Ag concentra-
tions and different perturbed clones. We are not
interested in calculating bifurcation diagrams, but
instead stability diagrams that indicate the stabil-
ity of the system as a function of the connectivity
matrix in the critical auto-Ag concentration range.
We have to distinguish three different types of sta-
bility. If the system remains stable irrespective of
which clone is perturbed, then the corresponding
connectivity matrix is called safe. If the system is
unstable irrespective of which clone is perturbed, its
connectivity matrix is called unsafe. If stability or
instability depend on which clone is coupled to the
auto-Ag, the corresponding connectivity matrix is
called dangerous. The reason for this will become
clear in Sec. 3. Often a network of a particular con-
nectivity has several dynamical regimes. Some of
which are stable, some are unstable. If at least 50%
of all tested starting conditions lead to stable so-
lutions, we classify the behavior as stable and vice
versa. In reality, what we have found indicates that
one half stable and one half unstable situations do
not occur. We have always found at least 75% of
stable or unstable cases.
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This categorization omits a lot of useful and
important information. However, it also reveals
some interesting patterns, which would otherwise
not have been detected.

3. Results

3.1. Behavior of the system without
Ag-interaction

The behavior of the networks defined above cover
the whole spectrum from fixed points over limit
cycles to chaos. Often several co-existing regimes
are found. A detailed discussion would go beyond
the scope of this paper and is therefore deferred to
other publications [Detours et al., in preparation;
Calenbuhr et al, in preparation]. We therefore
briefly indicate some general results and tendencies:

1-, 2- and 3-clone systems

In the 1-clone case the system has one fixed point.
In the 2-clone case the clones oscillate out of phase
and have the same amplitude. Various types of be-
havior are found for the 3-clone case, namely oscilla-
tions (open chain) and chaos (closed chain). In the
open chain case clones 1 and 3 always oscillate in
phase and have the same concentration, while clone
2 oscillates in phase opposition. The amplitude of
clone 2 is twice as large as that of clones 1 or 3.

The chaotic regime is characterized by the for-
mation of pairs of clones that synchronize (as is the
case in the 3-clone open chain case). However, as
soon as a new pair is forming it breaks up and a
new attempt is made to form a pair with the other
clone. The clones participating in the pair forma-
tion are selected randomly and the attempts to form
a pair occur irregularly. From a dynamical point of
view, all the clones are equivalent or interchange-
able. The phenomenon just described is reminis-
cent of the frustration phenomena found in neural
networks [Marcus et al., 1991; Atiya & Baldi, 1989
and spin glasses [Toulouse, 1977] and was there-
fore named “frustration induced chaos”. A com-
plete description will appear elsewhere [Bersini &
Calenbuhr, 1995; Calenbuhr & Bersini, 1993, also
in preparation].

Open versus closed chain

Up to 17 clones and considering only first nearest
neighbors, systems with an uneven number of clones
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are always characterized by oscillations in the open
chain case and chaos in the closed chain case (ex-
ception: 7 clones open chain, which also displays
chaos) [Calenbuhr et al, 1993]. Even numbered
systems always show oscillations up to this size.
For larger systems, this clear distinction remains
no longer valid. Also, if longer range interactions
are present this simple classification scheme breaks
down and more complex rules have to be applied.

Network fragmentation

From about 25 clones onwards, our networks show
in many cases a very interesting behavior; namely,
the large network behaves as if it was made up
of several smaller and independent non-interacting
networks. This phenomenon is called network frag-
mentation [Detours et al, 1994; also Calenbuhr
et al., in preparation]

Chaos versus oscillations

Chaos and oscillations are the most prominent be-
havior, although fixed points can also be found. In
many cases co-existing regimes are found. Chaotic
regimes become rarer with Increasing network size.

3.2. Interaction with auto-Ag

1-, 2- and 3-clone systems

A fixed auto-Ag corresponds to a situation of
a molecule that is always immediately being

replenished. Although mathematically simple, it is
to be noted that for the system a constant Agis the
hardest possible perturbation, and one most likely
to lead to an unbounded immune response. With
the parameter values employed here, there is a crit-
ical case for the 1-clone system when the auto-Ag
concentration is in the range u,, < 80 = [Ag] =
180 < [Ag.], where there is an unbounded immune
response.

For the 2-clone system the critical range is
smaller, since the perturbed clone receives addi-
tional stimulation from the unperturbed clones rais-
ing its mean field faster into a region where the ac-
tivation functions decrease. Before and after the
critical region the perturbed clone oscillates at a
high level, while the unperturbed ones oscillate at a
low level. This concentration pattern is important,
as it is representative for other cases.

The range of the critical region depends on the
parameter values and the number of clones and their
interaction scheme. In general, the critical zone
leading to instability lies, roughly speaking in the
range pm < [Ag'] < p,.

The 3-clone case is interesting because it rep-
resents the simplest network with more than one
interaction possibility. We begin with the 3-clones

closed chain case (3-ccc case), as illustrated in Fig. 3.

In the absence of auto-Ag the system displays ape-
riodic behavior. The introduction of an auto-Ag
leads to several changes in the behavior of the sys-
tem of which we shall mention only those results
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Fig. 3. Time series of the 3-clone closed chain system with and without auto-Ag interaction. For 0 > ¢ > 400 d there is no
interaction with auto-Ag and one finds a chaotic regime. Upon introduction of a fixed Ag at t = 400 d, the chaotic attractor
degenerates into a periodic one with the perturbed clone (2 in this case) oscillating in the low concentration range, while the
two unperturbed clones oscillate in the high concentration range. [Ag]=100. '




that are important for the following discussion. A
deeper analysis can be found in CBSV. The interac-
tion with the auto-Ag causes the chaotic attractor
to degenerate into one of several possible periodic
attractors. These are characterized by two different
concentration patterns. In one case the perturbed
‘lone oscillates with low amplitude, while the two
sthers oscillate with a high amplitude. The two
non-perturbed clones always have the same concen-
tration and oscillate out of phase with the perturbed
one (Type I behavior, in accordance with the termi-
nology in CBSV). In the other case the perturbed
clone oscillates at a high level and out of phase with
the other two that oscillate at a low level (Type III).

Roughly speaking for two values, [AgY] < fim
and [Ag'] > u, the system is always stable. That
means that the presence of Ag neither leads to an

(2)
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unbounded increase of one of the clones nor is any of
them totally suppressed. For pum < [Ag!] < pp (the
critical region) the system has one stable regime
(bounded response), corresponding to Type I con-
centration patterns, and one unstable regime (un-
bounded response), corresponding to Type III con-
centration patterns.

The interaction of an auto-Ag with the 3-clone
open chain system leads to several oscillatory
regimes which are all characterized by high level
oscillations of the perturbed clone and low level os-
cillations of the unperturbed one. In the critical
range these regimes become all unstable and lead
to an unbounded immune response.

There are three basic results that are interest-
ing as far as concerns the extrapolation from smaller
systems to larger ones; namely:

(b)

Fig. 4. Stability diagrams for (a) the open chain case and (b) the closed chain case. Along the left edge of the triangle, the
number of clones in the network increases from three (top of the triangle) to 25 (left, bottom corner). From left to right, the
number of nearest neighbors is plotted. For example, the left bottom corner corresponds to a system consisting of 25 clones,
with only first nearest neighbor interactions. The right bottom corner of the triangle corresponds to a 25 clone system with

1st, 2nd, ...

up to 24th nearest neighbor interactions. Dark squares correspond to unstable (shore) regions, half filled squares

to dangerous (reef) zones and white squares to safe (deep sea) areas. See also explanations in the text.
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(a) stability as a function of the system dynamics,
1.e. chaotic versus oscillatory dynamics,

(b) stability as a function of the connectivity ma-
trix, i.e. closed versus open chain configurations,

(c) stability as a function of the concentration level
of the perturbed clone. '

Larger networks

In what follows we shall describe the behavior of
networks of varying connectivity and up to 25
clones. The reason for this is that above this limit
network fragmentation starts to play an important
role in the determination of the system behavior.
Such a discussion would go beyond the scope of the
present paper. We shall concentrate exclusively on

350
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interactions of the IS and auto-Ag in the critical
range.

Open versus closed chain

The NC-diagram (N = number of clones, C = num-
ber of connections) in Fig. 4 depicts the stability
of the system as a function of its connectivity ma-
trix. On the z-axis, the number of nearest neigh-
bor connections are indicated, while on the y-axis
the total number of clones can be found. For net-
works with only first nearest neighbor interactions
(i.e. chains) there is always instability for the open
chain case, while both, stable and unstable solutions

are found in the closed chain cases. The simple
300
250 t
o 200 +
c * ,
S 150} s : LT
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Fig. 5. Time series of the first (a), second (b) and third clone (c) of the 19/9-cl system without auto-Ag interaction for
t < 400 d and with auto-Ag interaction for ¢t > 400 d. Upon introduction of the Ag, the chaotic regime persists, but
the perturbed clone (2) is forced into the low concentration range, while the two unperturbed clones remain in the high

concentration range. [Ag]=100.




pattern of closed chain connectivity corresponding
to stability, and open chain connectivity correspond-
ing to instability such as found in the three clone
case no longer remains true. However, the diagram,
shows that closed chain connectivities lead more of-
ten to tolerance than open chain connectivities.

Chaos versus oscillations

In general, oscillatory regimes tend to be unstable,
while chaotic regimes tend to be stable. Chaotic
regimes can therefore not always be classified as
safer or more advantageous than oscillatory ones, as
was suggested by the analysis of the 3 clone case.

General tendencies

* In the open chain case the safe, dangerous and un-
safe regions, respectively, are connected. To use an
analogy, the unsafe region in the low connected part
of Fig. 4 will be referred to as shore region, while the
large safe region in the medium- to high-connected
areas can be compared to deep sea. At the rims
of the deep sea area one finds reefs. This is also a
useful terminology, as the reefs reach into the safe
region of the deep sea.

In the closed chain case we identify some of the
characteristics of the open chain case, namely a con-
nected deep sea area with some irregular reefs with
low and medium connected connectivity matrices.
Also, the large connected reef forming a diagonal in
the region of near maximally connected connectiv-
ity matrices is found in the closed chain case. The
major difference between open and closed chain case
is the absence of the shelf region in the closed chain
situation.

A direct extrapolation of what was found in the
3-clone case has not been possible. The extrapola-
tion of the behavior of the small system to larger
ones allows us only to identify tendencies. There
is, however, an important exception. The concen-
tration pattern of the tolerant regime are always
characterized by high level concentrations of the un-
perturbed and low level concentrations of the per-
turbed clone. In the unstable case, the perturbed
clone can always be found in the high concentra-
tion range, see Fig. 5. It is important to note that
the stable regime does not necessarily have to be
oscillatory as in the case of the 3-clone closed chain
situation. For larger networks, the system can live
with the auto-Ag and can have either oscillatory,
chaotic or fixed point dynamics.
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An interesting structure is the distinct diago-
nal made of reefs in the closed chain case. This
structure can also be found in the open chain case,
however less marked. The mean number of connec-
tions per clone can be defined as degree of connec-
tivity. In this sense, lines of iso-connectivity can
be found along vertical lines in the diagram. Note
that the diagonal does not correspond to lines of
iso-connectivity, but that the diagonal of the closed
chain systems is shifted to the left compared to the
open chain case. On average, a clone in a closed
chain system has more connections than a clone in
an open chain system. If we suppose that a certain
connection density leads to the unsafe regions on
the diagonal, then this density is reached earlier for
a closed chain system. It can be easily verified that
the mean number of connections per clone in a par-
ticular N/C-closed network lies between the values
obtained for the corresponding N/(C —1)-open and
N/(C + 1)-open networks.

4. Discussion

4.1. Connectivity, stability and scaling

The idiotypic network models studied to date do
not have explicit mechanisms that stop short an
immune response in the presence of a constant Ag.
The fundamental question that we addressed here
is different, namely, whether it is possible to have
a coherent co-existence between the network and a
constant somatic auto-Ag solely on the basis of the
dynamic repertoire of the system. We have sys-
tematically studied the behavior of immune net-
works of different size and with diverse types of
connectivity matrices. It was indeed found that for
large connected areas in the NC-space the dynam-
ical repertoire provides stable dynamical regimes.
These allow the system to live with an auto-Ag.
Moreover, there are areas in the NC-space in which
instability prevails. However, there are also so-called
dangerous zones interspersed irregularly as well as
regularly in the stable regions.

An important issue in every study of network
behavior is the determination of scaling laws. The
behavior just described, however, is one of the
reasons that make it quite unlikely that the system
under study has scaling laws at the level of the sta-
bility properties as a function of the connectivity
matrix. Another reason is the appearance of net-
work fragmentation, which — roughly speaking —
plays a role in systems of more than 25 clones.
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We therefore have only studied networks of up to
this size. As the phenomenon of network fragmen-
tation is not yet fully understood, it appeared to
be more appropriate to study only a selected and
limited corner of the NC-space triangle. Neverthe-
less, some tendencies can be uncovered. In general,
higher connected immune networks tend to provide
tolerant regimes, while unstable, i.e. auto-immune
ones as well as dangerous zones tend to concen-
trate in regions of smaller connectivity. The ex-
ception in both, open and closed chain cases is a
narrow connected dangerous area along a line of
1s0-connectivity in the high connectivity region.

It is important to note that the characteriza-
tion as unstable (shore), dangerous (reef) and sta-
ble (deep sea) zones does not stem from the exclu-
sive presence of one of the behaviors in a particular
zone but from its strong dominance (at least 75%)
over the other behaviors, L.e., when moving horizon-
tally along the connectivity-depth-axis in the NC-
diagram, we do not encounter phase transition like
behavior that corresponds to one particular type
of behavior, i.e. stability or unstability, but transi-
tions in the relative frequency of occurrence of these
phenomena.

In CBSV it was suggested that closed chain
connectivities and/or the resulting chaotic dynam-
ics provide tolerant modes. This result from the
simple 3-clone case cannot be extended without
modifications to larger systems and more complex
connectivity matrices. However, in general one finds
that oscillatory modes tend to be unstable. More-
over, closed chain connectivities lead only rarely to
instability. In general, several regimes can coex-
ist. The principal result that can be generalized is
the following. In the three clone case it was found
that stable regimes are always characterized by the
following concentration pattern: oscillations of the
perturbed clone in the low concentration region,
while the unperturbed clones oscillate in the high
concentration range. This result can be general-
ized. Whenever, the perturbed clone is in the low
concentration range, while the unperturbed clones
are in the high concentration range, then — what-
ever the dynamics, i.e. whether it be chaotic, oscil-
latory or fixed points — the system will be stable,
i.e. tolerant.

4.2. Tolerance and autoimmunity

We have seen that connectivity space can be dj-
vided into several zones characterized by a particu-

lar type of behavior. Do these results provide any
useful insight with respect to the etiologies auto-
immune disease and their treatment? In the frame-
work of our network interpretation, auto-immune
disease could be due to defects in the network struc-
ture [Varela & Coutinho, 1991]. In particular, in-
travenous injection of pooled Ig (IvIg) is a success-
ful clinical practice which could be explained by a
camouflage- or fill out-effect of the network defects
[Kaveri et al, 1991]. Further, in a case study of
a patient suffering from Hashimoto’s thyroiditis we
have shown the changes in network dynamics be-
fore and after IvIg treatment [Dietrich et al, 1993].
Often auto-immune patients display remission of
Symptoms after IvIg treatment, but the symptoms
recur after a couple of months.

CBSV suggested that a large perturbation of
the immune system by injection of Ig could indeed
induce a shift from an unstable to a stable regime
in the case of coexisting attractors. Furthermore,
in the course of several months one would expect
the system to shift back to the old attractor, as
the effect of the perturbation dies out. In the case
of larger networks with more complex connectivity
structures, this still remains a valid possibility, as
we almost always find unstable regimes co-existing
with stable ones. This scenario also implies that,
given a certain connectivity, stability or unstability,
l.e. tolerance or auto-immunity would result from
the attractor that is selected. Which, in turn, de-
pends on starting conditions. In the course of the
life span of an individual, these are determined by
the term kg in Eq. (2). Hence, tolerance and auto-
immunity would depend on this factor.

The present results also suggest another alter-
native scenario. Ivlg injection could not only lead to
a change in concentration of several clones involved
and thereby inducing a shift from one regime to an-
other. An injection could also introduce new clones
into the system and thereby change the actual con-
nectivity matrix of the system. This in turn could
bring the system into a region of NC-space of dif-
ferent stability properties. Moreover, one expects
that also in this case the perturbation would die
out, such that the system shifts back to the original
regime.

A definitive answer as to whether these scenar-
ios are realistic can only be obtained by experiment.
Such experiments would require knowledge of con-
nected clones. The smaller the number of clones
involved, the better. If a pure change in concen-
tration of the clones can cause disappearance of




auto-immune symptoms in the organisms, then the
former scenario would be a good candidate for a
possible explanation for the mechanisms involved in
relation to IvIg-treatment. If, however, changes at

the level of the connectivity matrix play a role, then -

only detailed knowledge of the injected clones can
: us further. As such a detailed information
w1 probably not be obtained, it is perhaps more
adequate to manipulate the connectivity matrix of
the selected network in such a way as to suppress
one of the clones and investigate the effect of IvIg-
treatment with and without such a modification.

4.3. Future studies

e conclude by indicating some of the directions
to take in future work. First, we have to test the
. robustness of our results when relaxing the con-
straint of Boolean type affinities. Secondly, would a
system with meta-dynamics select those interaction
schemes favoring the stable regimes in the presence
of constant Ag? Thirdly, how do fragmented net-
works behave in the presence of auto-Ag?
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