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Optimal Product Designs for Multivariate
Regression with Missing Terms
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Technische Universitdt Dresden

ABSTRACT. A multivariate polynomial regression on the g-cube is considered where not all
products of the explanatory variables are present in the model. Using an approach of Lim &
Studden (1988) D-optimal product designs for a large class of models of this type are determined
in terms of their canonical moments and the efficiencies of these designs are investigated. It is
demonstrated that the D-optimal product design provides an efficient solution of an optimal
design problem, which is for nearly all cases unsolved.
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1. Introduction

Consider a multiple regression of degree m in ¢ > 1 variables

q m
Y(x) =a0+ Z ai‘xi+ z al’],iz‘xilxiz‘i-.‘. + Z ail,u-,im Hxlj (1)
i=1 1<i1<iz<gq 1<i1<  "<im<gq j=1
where the controlled variable x =(x,,..., x,)" is chosen from the compact design space

. . + . .
[—1, 1]9. The regression functions are the " q> multiple monomials up to degree m
q

]2[ xp  with Zq: h; < m. (2)
j=1 j=1
An approximate design is a probability measure on the g-cube [ —1, 1]? with finite support
Xy,...,x; and masses &, ..., ¢, The weight ¢ gives the relative proportion of the total
observations taken at the point x; (j=1,...,/). While properties of designs for the
multivariate polynomial regression (1) and product type multivariate models have been
studied intensively in the literature (see e.g. Kono, 1962; Farell et al., 1967; Lim & Studden,
1988; Rafajlowicz & Myszka, 1988, 1992; Wong, 1994), optimal designs for “incomplete™
multivariate models have not been studied so far. This paper considers the problem of
designing an experiment for a multivariate polynomial regression (1) where not necessarily

S all (m + q) monomials of the form (2) appear in the model. To be more precise let for
hyy.. h,e{0,... ,m} with Z9_, h; <m
1 if T14_, x7 appears in the multivariate polynomial regression

Py = {0 else

denote <m + q) given numbers with values 0 or 1 and define a linear model by
q

q

Y(x) = Z fh,,...,h,,(“h‘,...,hq nx,h’> (3)

Ai, ... hge {0, ..., m) =1 :
Z]‘lulhjSm
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The multivariate polynomial regression (3) has

Nq,m,f:= Z Lﬁh},‘..,hq
Ay, .., hge{0, ..., m}
qu: 1 hj m
parameters and the indicator functions #,, _, specify the monomials defined by (2) which

appear in the “incomplete” model (3). As a simple example consider the case g =3, m =2
and the polynomial

Uy + 0 X + Gy Xy + 03 X3 + 0y X, Xy + 0ls X3 ‘ (4
which emerges from (3) by the special choice

fo,o,o=f1,o,o=fo,1,o=fo,0,1 =f|,1,o=jz,o,o= 1,
(5)
jl,o,l=j0,1,1=j0,2,0=j0,0,2=0-

The vector of regression functions f(x) in the model (3) consists of the N, ,, , monomials
I'Ij“’=1 xj’.’f satisfying £4_, h, <m and 5, n, =1. For a given design ¢ on the g-cube
[—1, 1]¢ the information matrix is defined by

M() = J[ ST de) ® 0

By statistical considerations a good design maximizes an appropriate (concave) function of
the information matrix. A design is called D-optimal if ¢ maximizes the determinant of the
information matrix M(&). D-optimal designs for the “complete” polynomial regression (1)
(or equivale{ltly for model (3) with ., ., =1 for all hy,..., h,;) have been determined
numerically by Farell et al. (1967) (m=3,9=2) and Lim & Studden (1988)
(m=3,4,5,qg=2;m=gq =3). For larger values of m, ¢ the numerical difficulties increase
rapidly and the last named authors proposed optimal product designs in order to produce at
least efficient designs for the “complete” model (1). In this paper we will deterimine D- and
D;,-optimal product designs for many of the “incomplete” models defined in (3). Our main
tool is the theory of canonical moments (see Studden, 1980, 1982a, b) which allows an
explicit description of the D-optimal product design by the canonical moments of its factors.
Some tools for the calculation of the support points and weights of a design from its
canonical moments are given in the Appendix in order to make the paper self-contained.
Special examples are presented in section 3 while section 4 investigates the multivariate
polynomial regression (1) where some of the “highest” terms x}" are not present in the
model. Efficiency calculations indicate that the observations of Lim & Studden (1988) with
respect to the excellent efficiencies of optimal product designs in the “‘complete’ model carry
over to the “incomplete” models of the form (3). The results of this paper have been
implemented in the program OPTIMAL under MS-DOS which allows an efficient calculation
of D-optimal product designs for the model (3) and is available from the authors. For a
more detailed description of the program see Réder (1994).

2. D- and D,-optimal product designs for “incomplete” models

Let n =¢; x- -+ x £, denote a product design on the g-cube [—1, 1]? (which means that ¢
is a probability measure on the interval [—1,1], j =1, ..., q) and define Z, as the set of all
product designs on [ —1, 1]9. A D-optimal product design for the “incomplete” polynomial
regression (3) is a solution of the problem

maximize det (M(n)) with respect to neZ, (7)
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A standard argument in design theory shows that the D-optimal product design
n* =&¥ x -+ x &¥ has symmetric components ¢ * and we can restrict ourselves to designs of
this type which we call symmetric product designs.

In what follows we denote by W, ,,(x;) (i =0, ..., m) the monic orthogonal polynomial of
degree i with respect to the symmetric measure ¢; defined by

1
j 1 Wiy )W n(x) déi(x;) =0 for I #k (8)
(here ¢, is the jth factor of the product design n = ¢, x - - - x £,). The polynomials W, ;(x;)
can be defined recursively in terms of the canonical moments of the measure ¢; (see Lim &
Studden, 1988). To this end let ¢ denote a probability measure on the interval [ —1, 1] with
moments ¢; = |1 x' dé(x). Let ¢; denote the maximum of the ith moments ', x’ du(x) over
the set of all probability measures having given moments c,, ..., ¢,_, and let ¢; denote the
corresponding minimum. The ith canonical moment is defined as
1 G —Cp .

pi:ﬁ l=1,2,...
whenever ¢; < c¢; and undefined if ¢; = ¢; . Note that the canonical moments vary in the
interval [0, 1] because ¢; <c¢; <c¢;. A design ¢ is symmetric if and only if the canonical
moments of odd order satisfy p,;_, = 1/2 whenever they are defined (see Lau & Studden,
1985). For more details we refer the reader to the work of Studden (1980, 1982a, b). If p¢”
denotes the ith canonical moment of the symmetric factor ¢;, then the monic orthogonal
polynomials with respect to the measure d¢;(x) satisfy the recursion (¢§” = 1)

I’Vi+1(j)(xj) =X; I/Vi(j)(xj) _q(zp-zp(z{)u/i—l(j)(xj) i20 )

with initial conditions W_, ,,(x;) =0, Wy ,,(x;) =1 (see Lim & Studden, 1988). Note that
q¢" is defined by ¢{:=1—p{».

Let f(x) denote the vector of regression functions in the model (3). We define a
corresponding vector g,(x) of products of monic orthogonal polynomials as follows. If the
Ith component of f(x) is IIY_, x¥ (hy,. .., h, €{0,...,m}, ZI_ b, <m, S, , =1) then
the /th component of g, is defined as II7., W, ;(x;) (note that g, depends on
n=2¢& x -+ x&). In order to determine optimal product designs in the “incomplete” model
(3) explicitly we need the following basic assumption.

! Assumption 2.1
There exists a symmetric product design n with non-singular information matrix (6) and there
) exists a permutation matrix Q such that

0g,(x) = 4,0/(x) . (10)

where A, is a lower triangular matrix with determinant 1.

A necessary and sufficient condition for assumption 2.1 is that, if £, ., =1, then
Im,...n, =1 for every set (b}, ..., hy) such that h; <h, and &; and 4; have the same parity
forj=1,...,q. It also follows readily from the recursive relation (9) that the existence of a
symmetric product measure 7’ (with non-singular information matrix) and a permutation
matrix Q satisfying (10) implies that (10) is satisfied for all symmetric product designs n € £,
with det M(n) >0 (with the same matrix Q). As an example consider the model (4)
and define f(x) =(1, x;, X5, X3, X, X5, x3)T then, by the recursion (9), g,(x)=
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(1, Xy, X3, X3, X1 X5, x2 —pNT (n = &, x &, x &;) and a suitable choice for Q is Q =1 and

1 0000 0
0 10000
0 0100 0
Ay = 0 001 00
0 000 10

| —p 000 0 1|

Further illustrations for assumption 2.1 are given in the following section. Throughout this
paper we define

my=max {; | S, 4 =1} (11)
as the largest exponent of the variable x; in the incomplete regression (3) (j =1, ..., ¢) and
j(i,js k) = Z jh;,...,hq (12)
I i<k
=i

as the number of terms in the model (3) which are of degree smaller than or equal to k& and
which contain the factor x} (i =1,...,k,j=1,...,9).

Theorem 2.1

The D-optimal product design for an ‘‘incomplete” polynomial regression (3) satisfying
assumption 2.1 is given by n* =¥ x -+ x E*. Here, for j=1,...,q,,F is a probability
measure on the interval [ —1, 1] which is uniquely determined by its canonical moments

i 1
p(Z{)—lzii l=17"':mj’

Zf(i,j,m)
Py =— = , I=1,..,m —1, (13)
Zf(zj,m)+ Z H(i, j, m)

i= i=l+1
(J) —
pZ{rzj_la

where m; and 4(i, j, m) are defined in (11) and (12).

Proof. The discussion following (7) shows that the optimal product design must be
symmetric which implies for the canonical moments of its factors p$/ | = 1/2 whenever these
are defined. By assumption 2.1 we obtain for the information matrix (6) of a symmetric
product design 7 =¢; x - - x &,

M(n) = J[ y QA 0g,(x)g,; (x)QT(4 ) ™' Q dn(x)

and the determinant of this matrix is given by

det (M()) = det (f g,(x) g7 (%) dn(x)>

(-1, 1}4

q 1 J;,]“,q;,q
= H H l:j W%j(j)(xj) déj(xj):|>

2] _ hsm \j=1

q I, J, m)
=11 H U W, (x;) dg; (x)] (14)
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with

4q
Liams

Sl jm= Yy I G=L...mj=1..,9).
hi<m

The second line in (14) follows from the first by using the orthogonality relation (8) of the
polynomials W, ;(x;) which implies that the matrix

J{ y g, (x)g, (x) dn(x)

is diagonal with elements given by the integrals of the squares of the coefficients of g,(x). The
maximization of det (M(z)) with respect to the product design n =&, x - - - x £, can now be
carried out as a maximization of the factors

m 1 5, j, m)
4;¢) =11 [J Wiy () dé; (x; )}
i=1 —

with respect to the (univariate) measure ¢;. By lem. 4.3 in Lim & Studden (1988) we obtain

m .2 (i, j, m) m
4,8 =TI [22‘ H L P59 1p‘zf’] =[] (g9 pP1==1 2Codm
=1

i=1

where p{? denotes the ith canonical moments of ¢; and p{ , = 1/2 (by symmetry of &;). A
maximization of 4,(¢;) in terms of the even canonical moments p$}’ yields (13). Note that
L, F3G,j,m) =0 whenever

l>m,-=max{hj|jh1w--v"q= -

The uniqueness of the D-optimal product design follows, because p(f) =1 implies the
uniqueness of the single factor ¢;. O

Theorem 2.1 provides a complete solution of the D-optimal design problem in the class of
product designs for all “incomplete” models satisfying assumption 2.1. The optimal design is
uniquely characterized in terms of the canonical moments of its factors. The support points
and the weights of the jth factor ¢; with canonical moments (13) can be identified by
standard methods (see Studden, 1982a) and a corresponding result is given in the Appendix
in order to make the paper self-contained.

In the remaining part of this section we consider an alternative optimality criterion which
might be useful if the main interest of the experimenter is the parameters corresponding to
the “highest” powers in the model. To this end let s =m —n (n <m) and consider a partition
of the information matrix

Mn("l) M12(’7)
M(n) =
) (Mz,m) M22<n)>’

where M, () denotes the information matrix of the design # in the “incomplete” model of
degree n <m. A D,-optimal design maximizes

|M(n)|
|M11(’7)|

which is proportlonal to the determinant of the inverse covariance matrix of the least squares
estimator for the s =m —n “highest” coefficients [n < m] correspondmg to the multiple

My (n) — My (MM (M ()| =
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monomials

q q

Y, xk  with Inioong=1 and ) he{n+1,...,m} (15)
j=1 J=1

in the “incomplete” polynomial regression (3). The following result specifies the canonical

moments of the D,-optimal product design. Here and throughout this paper we use the

definition X!_, B, =0 whenever / < k.

Theorem 2.2

A D -optimal product design for the “highest s =m — n (n < m) coefficients” specified by (15)
in an “incomplete” polynomial regression (3) satisfying assumption 2.1 is given by
A =& x- x&. Here, for j=1,...,q, the jth factor & of the D,-optimal product design #
has canonical moments

PP =t =1, m,

Z F(@, j,m) = Z S, j,n)

PP = ; | . ;.
Y FG,j,m) — 2 SGim+ Y SGjm— Y S )
= i=l+1 i=l+1 ‘

l—_—l,--"min {n’mj}’

3 SGjm)

PSP == I=min{n,m}+1,...,m,
f Z H(i, j,m) + Z H(i, j, m)
! i= i=Il+1
with the convention that this sequence terminates at p{) whenever p%J) is 0 or 1 (1 <ly<m;)

and 0/0 is defined as 0.

Proof. The symmetry (which implies p$/ | = 1/2) is obtained by standard arguments. By
a similar reasoning as in the proof of theorem 2.1 it follows that the D,-optimal product
design is given by =& x - - x £, where & maximizes the factor

S, j, m)
l—[ ( Win;) dé/(xj)>
i Bi(§) = =n - G g n)"
| lj[ (J W:(j)(x') dfj(xj)>

Expressing B;(¢;) in terms of canonical moments of the measure ¢; we obtain by straight-
forward algebra

Bi(&) = [] (g5 pP) i = ot i H (@4 p4) > (17)
=1 Il=n+1

with o(l,j,m) =Z7L, #(i,j,m). If n <my, it is easy to see that o(/,j,m) —o(l,j,n) >0

(/=1,...,n) and that 6(, j,m) >0 (! =n+1,...,m;). Thus the assertion follows directly

by maximizing (17). The remaining case n > m; is more delicate. In this case B;(¢;) reduces

to

B,(%) = ,ﬁ (@5 .pP)™ (18)
=1
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where

my
n, :G(l,j, m) _G(laj’ n) = Z j(l’.h m) _f(l’]’ n)
i=1/

mj
=2 Y e by (19)
i=1n+l$ZZ=]hk<m
hj=i

In the last line we used #(i,j,r) =0 for i >m;, and r € {n, m} (which is immediate from the
definition of m; and (12)). From (19) we have n, >n>--->n, >0 and defining
lo+1=min {/ | 1</<m; n; =0} we obtain from (18)

lo
B;(&) = 11-—[1 (@5 05)™.

‘; If [y = 0, then £, can be chosen arbitrarily. We put p$” = 0 which corresponds to the assertion
of the theorem and obtain the factor design fj with mass 1 at the point 0. If /, > 1 we obtain
pSy=1and p§P =n//(n,+n,, ;) (1 <! <) which is (16) in the case n > m;. a

7y Remark 2.1. The proof of theorem 2.2 can quite easily be adapted to the designing
problem for the estimation of any subset of parameters in the model (3) which complement
a submodel of (3) satisfying assumption 2.1. O

Remark 2.2. Theorems 2.1 and 2.2 consider the design space [ —1, 1]¢ but the results can
easily be transformed to arbitrary cubes of the form ®j‘.'=[ [a;, b;] using a similar argument
as in Fedorov (1972, p. 80) and assumption 2.1. The support points of the factors ¢; have to
be transformed linearly while the masses remain unchanged. The canonical moments of the
factors ¢; of the optimal product designs are invariant under such a transformation and the
reader can identify the optimal product design directly from (13) and (16) using the results
of the Appendix. O

3. Examples

Theorems 2.1 and 2.2 are now illustrated by several examples.

Example 3.1. Consider the model (4). By theorem 2.1 and (5) we obtain for the D-optimal
! product design n* = ¥ x &% x &3 where £%, £¥ have canonical moments

) P =4 PP =1 (j=23)
and the canonical moments of £F are

1 1y __1 D_3 1) _
pV=pP =3 pP=3 pP=1

The results of theorem A.l in the Appendix give for the factors of the optimal product
design

-1 1 -1 1
Tz(; 1 3> 5§=5§=<1 1)'
8 4 8 2 2

If we are interested in the estimation of the parameters corresponding to the terms x,x, and
x? we apply theorem 2.2 (with m =2, n=1, m; =2, my=1, my=1) and obtain for the

S
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canonical moments of the factors of the D,-optimal product design

By theorem A.1 a D;-optimal product design is given by 4 = &, x &, x &, where

-1 0 1 -1 1 ~ 0
£1=< 1 1 l)’ 52=< 1 l)) 63:(1)
3 3 3 2 2

Note that this design has a singular information matrix for estimating all parameters in
model (4) because the factor &; puts mass 1 at the point 0. Other D,-optimal product designs
can be obtained by using arbitrary symmetric measures for the design &,—see the proof of
theorem 2.2. O

Example 3.2. Consider the model [m =3, g =2]
Oy + 0 Xy + %Xy + 03 X2 + oy X3 + s x2x, (20)

on the design space [ —1, 1]%. Assumption 2.1 is easily verified using the matrix Q = I,

o 0 0 0 0 0)
0 0 1 0 0O
A, = —pp 0 0 1 00
"0 —p$H — ghpM 0 010
0 0 —p$ 0 0 1

.~ 7

and the vector of regression functions f(x) = (1, x,, x,, x?, x3, x?x,)T. For the quantities
Z1,.n, in the model (3) we have

fo,():fl,o:fo,l=f2,o=j3,o=v¢2,l=1
fo,2=f1,2=fo,3=f1,1=0

and the D-optimal product design is given by n* = £¥ x £¥ where the canonical moments of
E¥ and &% are specified in (13). Thus we obtain

L PP =1

Blw

PO =pP=pP =1, P =4, p=
which gives by theorem A.1 for the first factor of the D-optimal product design
-1 = =L
EEN
4 4

1 1
a a

~J

Similarly it follows from p{® =1, p® =1 that the second factor is given by

-1 1
53:(1 1)'
2 2

In order to calculate the optimal product design for estimating the coefficients of x?, x?x,
and x3 we apply theorem 2.2 and calculate the canonical moments of the factors of the
D,-optimal product design [m =3,n =1] as

1 3 —
’ Pg)=2, p(ﬁl)_l

M=

pP=pP=pP =3, pP=

© Board of the Foundation of the Scandinavian Journal of Statistics 1996.




Scand J Statist 23 Designs for multivariate regression with missing terms 203

By theorem A.1 we obtain the D,-optimal product design for the model (20) as ¥ = &, x &,

-1 =t =1 11
51:(1 W 1>’ 52:(1 1)' O
14 7 7 14 2 2

Example 3.3. Consider the “complete” model (1), ie. £, . , =1 for all A, ..,
h, € {0,...,m} with Z¢_, 1, <m. In this case we have

Sjm) = 5 1=<m—i+q—1>

Tk pjesm—i q—l

and obtain by theorems 2.1 and 2.2 the results of Lim & Studden (1988). For example, the
even canonical moments of the factors of the D-optimal product design are given by

m(m—i+q—1 m-—1+gq
o )
@) i=1 q q

pir = ; - =
m(m—i+q—1 m (m—i+q-—1 m—Il+g—1 m—1I+
Z( ! )+ . ( | ) < q >+< q)
i=1 qg—1 i=1+1 g—1 q q

qg+m-—1 =1
= I=1,...,m
q+2m-—1)
independently of j =1, ..., q. Here the second line follows from the identity

Lfg—14] q+i
= 21
j§0< q—1 ) ( q > 2
(see Scheffé, 1958, p. 356).

4. Multivariate regression with missing ‘“‘highest” terms

Consider the “complete” model, where some of the powers x7” are not present in the model.
Thus we have in model (3)

FImo,...0=Fomo. . 0= =Fo.  omo,..., o=1
k-1
jo""'o’m=j0,...,0,m,o='"=fg,.,.,0m,0 ,,,, 0:0 (22)
k
Iy, ., =1 otherwise

and (3) reduces to

q
Y(x) =0+ Z uxXi+ D %y XXt

j=1 1<i1<iz<yq

m k
TR N TR JE I o e
1<i< - <im<q j=1 Jj=1
Ir#siiy<is
The quadratic case (i.e. m = 2) has been investigated by Uppermann (1993) who found the
D-optimal designs explicitly using the Kiefer and Wolfowitz equivalence theorem. Even this
case requires an extremely tedious analysis (see Uppermann, 1993) and it seems to be
intractable to obtain the optimal designs explicitly for polynomials of higher degree.
However, the results of section 2 show that the optimal product designs can be described in

terms of the canonical moments of their factors. To this end we observe that assumption 2.1
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is satisfied and obtain from (22) and example 4.3

.. m—i+q—1)\ .
H,jymy= Y f,,hmu?:( >j=1,...,k

Zi=1hism q_l
h}'=i
_; ~1
S <m '+‘1] )iflsism—l
L/ = Q“ .
=k+1,...
0 if i = m J=kALm

which implies (using the identity (21))

(’"_Hq) ifi=1,.. .k

“ .. q
j” =
,-; (i, J, m) (m_[+q

)—1 ifj=k+1,...,m
q

Now straightforward algebra yields the following result.

Theorem 4.1
The D-optimal product design for the model (23) is given by

M= EE X X EExEE X x &

k q
where the designs E¥ and % are uniquely determined by their canonical moments

qg+m—1I
P =3, P(zlz)=q—;"2—(;7_—l) (I=1,...,m (pSh=1)

P =3 (=1,..,m=1)
@+m-—-D!—(m—1)lq!

@ — P,
pa g@g+m—-D'+m—-D@+m—1—-1)!-2(m —1)q! ( > » M )
P _2=1

The D;-optimal design can be calculated in a similar way, As an example we
consider the case n =m — 1, which is of particular interest for testing if the degree
of the multivariate polynomial (23) is m or m — 1. The proof of the following result
is omitted for the sake of brevity.

Theorem 4.2
The D\-optimal product design for the “incomplete” multivariate polynomial regression model
(23) is given by

ﬁ:f]'x---xf,lx\fzx---xfz‘

— g Y
k q—k

where the designs &, and &, are uniquely determined by their canonical moments

—1l4+m-—1
=1, pp =1 I=1,... h =1
p21—1 29 le q-—1+2(m—l) ( ’ 9m) (pgm )
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and

P(zzl)—1=% (I=1,...m=1)

Mol tg—1—(q—1)—0D
PR = (m_i;i;?! U=1,...m—2)
2(m—l)+q—l—2(q—1)!(m_l_2_;_q)!
PS_2=1,
respectively.

Example 4.1. Let m =3, ¢ =2, k = 1 and consider the model (23) on the square [—1, 113,
which gives
| Y(x) = ag+ %, + G Xy + 03 X3 4 0 X3 4 s X X5 + X X3+ 07 X7 X5 + 0g X7

(compared to the complete model (1) only the term x3 is missing). Theorem 4.1 yields for the
D-optimal product design n* = £} x &% whete the canonical moments of ¢} and £ are given

; respectively. Now theorem A.1 in the Appendix gives for the support points and weights of
* the designs ¢F and &%

-1 = = -1 0 1
‘f?':(; Jf {6 1) 53:(_5_ 2 i>
10 5 5 10 14 7 14

and n* =¢&¥ x &% is the D-optimal product design. Similarly, it can be shown that the
D,-optimal product design (i.e. the design for estimating the coefficients x,x3, x{x,, x7) is

given by 4 =&, x &, where
1
L)
3

- -1 = =1 ~ —1
51:(1 { Jf 1) 52:(1
4 4 a4 3 3

Note that & and &, are the D-optimal designs for a cubic and quadratic univariate
| i polynomial regression (see Atkinson & Donev, 1992, p. 125).

o

w
Wi

Corollary 4.1

The D,-optimal product design for the bivariate polynomial regression (23) with g =2, meN
and k =1 is given by i = & x &, where &, and &, are the D-optimal designs for a univariate
polynomial regression of degree m and m — 1, respectively.

Proof. By theorem 4.2 the even canonical moments of & and &, are

m—1+1
Q) l=1,.‘
L Ty | e

and

—1 —1-7+1
= " n + =1,...m-—1

2) — —_
P =3m—D—1 2m—-1-D+1 :
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Table 1. D-efficiencies of the D-optimal product designs n* for the “incomplete” quadratic model (23) with
q — k missing terms. u* denotes the D-optimal design
q k P g2 det My (n}) det M, (n*) D-efficiencies
1 1 3 0.148148 0.148148 1
2 1 5 0.105469 0.105469 1

2 6 0.1112 x 10! 0.1143 x 10! 0.99553
3 1 8 0.8192 x 10! 0.8192 x 10! 1

2 9 0.6711 x 10-2 0.6815 x 1072 0.99830

3 10 0.5498 x 103 0.5783 x 103 0.99495
4 1 12 0.6698 x 10! 0.6698 x 10! 1

2 13 0.4486 x 102 0.4531 x 102 0.99924

3 14 0.3005 x 103 0.3102 x 103 0.99772

4 15 0.2013 x 10~# 0.2157 x 10—+ 0.99539
5 | 17 0.5665 x 10! 0.5565 x 10! 1

2 18 0.3210 x 10~2 0.3232 x 102 0.99962

3 19 0.1818 x 103 0.1859 x 103 0.99885

4 20 0.1030 x 10~¢ 0.1080 x 104 0.99766

5 21 0.5840 x 10-¢ 0.6348 x 10-¢ 0.99604 5‘.’)
(p%) =p%, 1 =1). But these are exactly the canonical moments of the D-optimal designs for
a (univariate) polynomial regression of degree m and m — 1 (see Studden, 1980, which proves
the assertion. O

It might be of interest to compare the D-optimal product designs of theorem 4.1 with the
D-optimal designs calculated by Uppermann (1993) in the quadratic case. To this end we use
the D-efficiency

det M(n*) )Ww am

(™) = (sup,, (det M(7))

where n* is the D-optimal product design, the sup is taken over all designs on the g-cube
[—1,1]7 and 4, , ,, is the number of parameters in the model (23) (depending on k, ¢ and
m). The efficiencies for various values of the parameters ¢ and k are listed in Table 1. The
results indicate that the D-optimal product designs are highly efficient in all considered cases.
It is remarkable that in the case k = 1 the product designs are also globally D-optimal and
that the efficiencies of the product designs are slightly decreasing when %, 4 m 18 INCreasing.
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Appendix

The following result provides an efficient tool for calculating the support points and weights
of a design corresponding to a terminating sequence of canonical moments (see Roder, 1994
for a detailed proof).

Theorem A.1
J Let & denote a probability measure in the interval [a,b], a,beR (a <b) with canonical
moments pj 6(03 1) for J = 1: e 2m —1 and Pom = 1’ deﬁne Cl =P 1=, Cj =qj—]pja

S Y, =Pi-19; (j=2,...,m).
& has exactly m + 1 support points a = xog < X; <*** < Xpy_1 < X,, = b, which are the roots

of the polynomial
O 1(¥) = (x — @) (x = 0) Q1 ().
The weights at these points are:

(mh =~ Pul) o m

a Qm+1(x)|x=xj

Here the polynomials P,(x), Q;(x) are defined recursively by Q_,(x)=P_,(x) =0,
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Qo(x) = Po(x) =1
Q1) =[x —a = (b =)y 2+ ¥ )G X) — (0 —@)*y54175420 -1 (%)
O<j<sm-=2)
P =[x—a—(0—a)ly2+ Ll )P(x) — (b =)y 102 P 1 (%)
0<jsm=12),
and

Pp(x) =[x —a— (b —a) 2Py _1(x) = (b — @) (31 {2 P 2(%).
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