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Abstract

In this paper the applicability and the speedup potential of a new load balancing strategy for
distributed and parallel systems will be investigated by simulations. For this purpose, we will define
a cellular automaton system which can produce process migration proposals according to the load
states of computing nodes. The new strategy will be tested using our simulation environment
CABLE. The simulation results for workstation clusters indicate that this new method possesses
good applicability and a significant speedup.

Keywords: Cellular automata; Dynamic load balancing; Massively parallel processing; Workstation cluster

1. Introduction —

= SR

" ’(,
o ——

/ =

Massively parallel proces’sing in the case of complex workstation clusters is of in-
creasing interest, because’ such architectures can usually provide much more attractive
cost/performance thanlarge computers [4,8]. Most of the existing workstations are
connected with LANS and WANs. To support the distributed programming on a work-
station cluster, sevéfal development platforms, e.g., PYM, have been provided. However,
the usage of workstanon clusters, primarily in a smgle LAN, requires new methods of
dynamic load balancing to: “achieve a ‘good utilization of a complete system [3,5,9,11].
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For such a purpose we will present a new strategy based on the concept of “intelligent
tables” [ 1]. That means, the information necessary for load balancing will be processed
in specific data structures which will be realized by specific cellular automata. Under the
conditions of a system architecture described in the next section, we will introduce our
cellular automaton system which meets these requirements. Moreover, we will present
the main characteristics of our simulation environment CABLE (Cellular Automata
Based Load Balancing Experiments). CABLE allows users to define arbitrary virtual
workstation clusters and to simulate their behaviour under different simulation parameters
selected by users. Using CABLE, we will analyse and compare the performance of
different virtual workstation clusters without and with regards to load balancing by
means of cellular automaton systems.

2. System architecture overview

The regarded system consists of a number of network segments (e.g., a simple
bus or ring with a token based protocol) which are connected with a main control and A
communication unit MCCU (see Fig. 1). Each segment is composed of a certain number’
of computing nodes. We assume that the computing nodes are homogeneous. In order
to realize communication between processes in different segments, the corresponding
segments can be switched on by the MCCU which behaves like a bridge/gateway. The
MCCU is the main component of the System, to which the segments as well as the
console are joined.

The basic component of the MCCU is the mapper, which distributes new applications
and performs load balancing dynamically. The mapper is based on a 2-dimensional
cellular automaton system, where the number of its cells depends on the configuration
of the network segments. Each node is represented by one cell. In Fig. 1, m stands for
the number of segments and n for the number of nodes in one segment. According to the
state of the cellular automaton system, the mapper generates process migration proposals
and sends migration information to the nodes concerned which perform the real process
migration by themselves. We assume that the network system provides server routines
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Fig. 1. Architecture overview.
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which initialize the workstation cluster and realize the migration of processes.

Within the MCCU there is one monitoring unit for each segment (M;, i=1,...,m).
which inspects the load of the segment and the nodes within the segment, collects their
load information and prepares the collected data for the mapper.

3. Monitoring unit

For each segment, the corresponding monitoring unit inspects the segment load from
two complexity measures: the communication cost and the number of processes. It
records the communication costs of the individual nodes and calculates the average
communication rates from the recorded communication costs in a certain period. Fur-
thermore, it combines this data with the number of processes on the corresponding
nodes to determine the total load of each individual node and transfers the total load
to the mapper periodically by setting the state of the corresponding cell of the cellular
automaton.

Each monitoring unit is connected to a network segment physically and provides each
node in the segment with one register to record communication costs; let ¢(i) represent
the register for the ith node. The monitoring unit inspects all messages transferred
through the segment and can obtain the following information from a message header:
message size, sender address and receiver address. If the sender of a message with
the size of [ bytes is located on the ith node and the receiver on the jth node within
the same segment, the half of the message size (/ /2) will be added to c(i) and c(/)
respectively, so that the whole segment has the communication costs of [ bytes. If only
the sender or the receiver is located on the kth node within this segment, the whole
message -size [ has to be added to c¢(k), because such a message concerns two segments
and each of them has costs of  bytes. However, it is not necessary to distinguish the
costs for sending messages from the costs for receiving messages, because the direction
of a message transfer has no meaning to the communication load of a segment.

Letting 7 be the evaluation period and 4 the data throughput of a network segment,
the communication rate (i) of the ith node will be calculated from r(i) = c(i)/(dxT).
Letting ¢; (0 < ¢y < 1/n) and ¢; (1/n < ¢ < 1) be two constants, we define the
communication load states S.(i) of the ith node as follows:

Sc(i) =0 < r(i) =0 (no communication),

S.(i)y u=1 < 0<r(i) <c; (low communication load),
S.(i) n=2 < ¢, < r(i) <c¢; (normal communication load),
S () =3 = r(i) > (high communication load).

Besides the communication load, the second load factor is the process load, i.e., the
number of processes running on the same node. We assume that on each node there is
a server routine which records the number of processes and sends it to the monitoring
unit at a certain time.

Letting p(i) be the number of processes on the ith node, and p; and pp (integer
constants) represent the lower and upper limits of process load respectively, we define
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the process load states Sp (i) of the ith node as follows:
Sp(i) 2=0 p(i) =0 (idle),
Sp(i) =1 < 0 < p(iy<pr  (low process load),
Sy(i) =2 21 < p(i) <pr» (normal process load),
Sp(i) =3 <= p(i) > .2 (high process load).

The monitoring unit calculates the abstract total load state S(i) of the ith node by
combining S.(i) with Sp (i) (see Table 1) and sends S(i) to the corresponding cell of
the cellular automaton. The meaning of S(i) can be found in Definition 1. In additionr -~
to the abstract total load state, the mapper needs some detailed information about the

number of processes. So, the monitoring unit has also to send the number of processes
to the mapper.

-

4. Mapper - Cellular automaton system

The load states of nodes in a workstation cluster can be visualized in 3-dimensional
graphics (see Fig. 2). If no load balancing algorithm is used in such a system, the
load states of different nodes are usually quite diverse (see Fig. 2(a)), i.e., some nodes
are overloaded (presented by peaks), while the others are idle or underloaded. In order
to achieve a good utilization of the complete system (see Fig. 2(b)), the use of load
balancing algorithms is necessary.

Ideally, the load of individual nodes should be balanced globally in the system. In
practice, however, this is impossible because maintaining a global consistent load state
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Fig. 2. Load states of a workstation cluster.
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of the system is too expensive due to the dynamic behaviour. Therefore, a generally
effective solution often aims to balance the load locally in a certain neighbourhood.
The theory of cellular automata [10] has been proven to be an elegant method to
produce a global transformation by local modifications (in the neighbourhood). Here,
the behaviour of a cell will be determined by the application of transformation rules in
dependency of the states of cells in the neighbourhood. Our basic idea is to use a cell
of a cellular automaton to represent a computing node of a workstation cluster, where
the state of the cell stands for the load state of the node. In this way, a global load
balancing solution can be produced just regarding local load states.

For this purpose, we have defined a cellular automaton system which consists of a
2-dimensional grid and an additional column vector [1]. The grid represents load states
of the workstation cluster and each cell represents the load state of the corresponding
node. However, each cell of the column vector represents the abstract load state of
the corresponding segment. Therefore, we call the column vector an abstract automaton
(A1, see Definition 1) and the 2-dimensional grid a load balancing automaton (A2, see
Definition 2). Al and A2 are driven by rule schemes R1 and R2 respectively. After the
monitoring unit has set the automaton system, the mapper will activate R1. The states
of Al determine the necessity of dynamic load balancing in the system. If the mapper
identifies overloaded states in A1, R2 will be activated to produce a migration proposal.
In order to decide whether the migration proposal is useful, the mapper will activate R1
once again and compare the new states of A1 with the old ones.

Here, we do not intend to introduce the fundamentals of the theory of cellular au-
tomata, which can be found in [10]. In the following we define the abstract automaton
Al and the load balancing automaton A2, and present two representative rule schemes
R1 and R2 which were developed interactively by means of our simulation shell CASS
(6]. The individual rules of a rule scheme will be processed successively, until one rule
is executed successfully.

Definition 1. The 4-tuple Al = {S,NB, G, co} is called an abstract automaton, where
e §={0,1,2,3,4,5,6} is a finite set of cell states with O = idle, 1 = underload, 2
= normal load, 3 = process overload, 4 = communication overload, 5 = complete
overload, 6 = unavailable (cf. Table 1);
e NB(i) corresponds with the ith row of A2;
o the global transformation G, R1, is based on the local transformation g C 5" x §;
e Cg is the initial state of Al.

Regarding all elements of the ith row of A2, the abstract ioad state of the correspond-
ing segment can be calculated by R1. The following is a representative rule scheme
R1, where M(i) = %Z;f:l A2(i,j) stands for the mean load state of the ith row and

k,o € {l,...,n} represent two system specific constants:

RL.1: Al(i) :=0<= M) =0 -
R1.2: Al() =1l M()< 13
R1.3: Al() i=2<=M() <25
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R1.4: Al() m=3e= (2.5 < M) S 35) A (Y] A2(4, ) =3)
with j € {ji,..., i} and ji,...,j; € {I,....n}
RLS: Al(i) =4 = (3< M) <4)A (V] A2(i,)) = 4)
with j € {ji,...,j,} and ji,....j, € {1,...,n}
R1.6: Al(D) BERES JAOPYE
RL7: Al(D) t=bes= M) =6

In order to simplify the rule scheme R2 so that the efficiency of the load balancing
automaton A2 can be increased, A2 is defined as a homogeneous automaton.

Definition 2. The 4-tuple A2 = {S,NB, G, co} is called a load balancing automaton,
where
* §={0,1,2,3,4,5,6} is a finite set of cell states which are defined analogously
to the states of Al (see Definition 1):
¢ NB represents the Moore neighbourhood with radius 1, ie., A = § (h stands for
the number of neighbours); .
* The global transformation G, R2, is based on the local transformation g C §* x §:
® ¢y is the initial state of A2,

The state of each cell in A2 will be changed by R2, depending on the states of
the corresponding neighbours. The following presents a representative rule scheme R2,
which belongs to the class of hybrid-muitiple cellular automara, i.e. R2 consists of two
parts (R2.1.1-R2.1.8 and R2.2.1) representing two rule schemes (also see Section 6).
A2 is able to switch between the first part of R2 and the second part according to the
actual load states. In the first part of R2 we distinguish between two cases:

(1) If the state of the current cell is 0 or 1, the neighbour with the “highest” state
will be identified. If the “highest” state is greater than I, it will be proposed
to move some processes from the identified neighbour to the current node (see
R2.1.1-R2.1.3).

(2) If the state of the current cell is 3,4 or 5, then the neighbour with the “lowest”
state will be identified. If the “lowest” state is O or I? it will be proposed to
Move some processes from the current node to the identified neighbour (see
R2.1.4-R2.1.8).

In the second part of R2 (R2.2.1), A2 will be activated by the mapper, only if all
cell states are 0 or |.

In the following rules, p(i,]) represents the number of processes on the node corre-
sponding to the cell A2(i,j), and p; and p, have been introduced in Section 3.

R2LLD A2 j) v= 1= A2, /) =0 A p(i,j) =0 A 37 € NB €{2,3,4,5}
R212: 4200 )) v= 1 = A2(0,/) = 1 A p(i,)) < provdc € NBg & {2,3,4,5}
R2.1.3: A2(i, )) n=2 = A2(0, ) = 1 Ap(i,j) =p “/\ 3z € NBz € {3,4,5}
R214:A200)) =3 <= A2, j) =3 A p(i.j) > 2py ATz €NBz € {01}

d
0

- -
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RL1S: A2(i.j) =2 = A2(i, /) =3 A p(i,j) > py A3z € NBz € {0, 1)
R2.1.6: A2(i.j) w=2 = A2(i,j) =4 Ap < p(i.j) < prAdz € NBz € {0, 1}
R2.1.7: A2(i, ) u=3 < A2(i,j) =5Ap(i,j) >2p2 A ENB: € {0,1}
R2.1.8: A2(i,j) =2 <= A2(i,j) =5Ap(i,j) >prAJz: ENB: € {0,1}
R2.2.1: A2(i,j) n= 1= A2(i,j) =1 A p(i,j) < pi A3z e NBz € {0}

Now, we explain how to understand the above rules, using R2.1.5 as an example. If
the state of A2(i,;) is 3, more than p, processes are placed on the node and if there
exists a neighbour with the state O or 1, then the state of A2(i, ) will be changed to 2.
That means, some processes on the node represented by A2(i, j) should emigrate to the
neighbouring nodes.

5. Simulation environment CABLE

To discuss the applicability of our method, we developed a simulation environment
CABLE, which has been implemented in the objective C programming language un-
der the NeXTSTEP graphic user interface. This implementation is independent from
hardware architectures. The source code of CABLE has a size of 1.6 Mbytes and can
be easily ported to any systems in which NeXTSTEP and an objective C compiler are )
available. On a NeXT computer with the M68040 CPU and a memory of 20 Mbytes,
a typical simulation of a cluster with 100 computing nodes and 1000 processes needs
about 5 minutes.

The goal of this simulation shell is to demonstrate the achievable speedup and the
usage ofthis new load balancing strategy, considering realistic aspects of workstation
clusters. Therefore, a number of system parameters have been defined, which can be
interpreted as the user interface of this simulation shell. The main parameters regarded
here are: the performance of computing nodes (e.g., MIPS and MFLOPS), the perfor-
mance of networks (e.g., transfer rate, frame size and token holding time), the size
of clusters (i.e., number of segments and that of nodes per segment), the scheduling
algorithm, the measurement and evaluation cycle, the cellular automaton system and its
states, the simulation mode (i.e., with load balancing, without load balancing, or both),
and the applications. These parameters can be defined individually and modified (or se-
lected) interactively. They characterize the simulated workstation clusters, the simulated
applications and the used cellular automaton systems.

The simulation shell CABLE allows to define a virtual conﬁguration of a worksta-
tion cluster and to simulate its behaviour under different parameters selected by users.
CABLE can be divided into three logical levels: the User interface, the Simulation
controller and the Simulation kernel, shown in Fig. 3.

The User interface consists mainly of the Parameters unit, the Statistics & Visualiza-
tion unit and some specific user tools. The parameter unit is responsible for inputting
simulation parameters and commands. For some parameters, CABLE provides users
with certain values for selection; e.g., in the current version, we have developed eight
cellular automaton systems and users can select one of them for a certain simulation.
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Fig. 3. Logical configuration of CABLE. o~

However, some other parameters can be defined freely, e.g., users can define any simu-
lation applications by means of a load description language provided by CABLE. Each
parameter has a default value which can be changed by users. CABLE provides some
specific tools for handling the parameters and visualizing the simulation results.

Based on the parameters from the User interface, the Simulation controller builds
a corresponding simulation environment and controls the execution of the simulation
according to a simulation description. A simulation description contains the following
information about applications to be simulated:

e the number of applications,
the start time of each application,
the number of processes each application has, and
the contents of each process which consists of computation instructions as well
as communications instructions. Computation instructions can be divided into two
classes: integer and floating point.

The simulation controller generates the simulation applications at the time specified in
the simulation description.

The Simulation kernel consists of a virtual workstation cluster (Network) and the
MCCU (cf. Fig. 1). The behaviour of the cellular automaton can be visualized by means
of user tools. The Mapper collects simulation results, from which the User interface can
create different statistics and visualize them. CABLE is able to analyse and compare
the performance of a certain virtual workstation cluster using a cellular automaton
system with the performance of the same cluster under the same conditions, e.g., the
same applications, but without using any cellular automaton system (see Section 6).
Fig. 4 shows the main control flow of the Simulation kernel, which will be started
by the simulation controller, after the simulation controller has finished the simulation
preparation, i.e., building the necessary simulation environment. In principle, the kernel
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Fig. 4. Main control flow of the simulation kemel.

is a loop of six simulation steps: A-F. However, some steps (e.g., A and F) are not
executed in every loop iteration; this is because new applications will be generated only
at the time specified (not in each iteration) and the migration of processes is performed
only when it is necessary. The decision which steps should be executed is made by the
simulation controller. Moreover, the controller must adjust the execution time of each
iteration to a constant which is called simulation cycle. The simulation cycle is one of
the most significant simulation parameters and can directly influence simulation results.

6. Simulation results

We have developed and tested different types of cellular automaton systems. One type
of cellular automata transfers processes from overloaded nodes to underloaded nodes,
which is called an active cellular automaton. In contrast to this, in a passive cellular au-
tomaton underloaded nodes request processes from overloaded nodes. Complex cellular
automaton systems combine active and passive strategies, i.e., hybrid cellular automata.
We have also simulated hybrid cellular automata with two rule schemes, namely hybrid-
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Fig. 5. Speedup comparison among different cellular automaton systems.

multiple ones (see Sectton 4). Concerning the performance speedup and the scalability
of the system, the hybrid-multiple cellular automata have shown the best results in com-
parison with other automaton types: (see Fig. 5). The regarded simulations are based
on applications of different communication classes (low, middle or high) and different
process sizes (from 15Kbytes to 150 Kbytes). The size of simulated workstation clus-
ters is scalable, e.g., in Fig. 5 the cluster size ranges from 100 to 800 nodes. In order
to compare the speedup of different cellular automaton systems under the same condi-
tion, in Fig. 5'the simulated processes are statically distributed at the beginning of each
simulation according to the same sequence of random numbers. Moreover, the number
of processes in different simulations is proportional to the size of the corresponding
workstation cluster, i.e., 800 processes are simulated on a workstation cluster with 100
nodes, while simulations for a workstation cluster with 800 nodes need 6400 processes.
In this way, all of the regarded simulations have the same initial systemn load.

Fig. 6 shows another speedup comparison from the viewpoint of the same number of
processes on different sizes of workstation clusters. At the beginning of each simulation,
1800 processes are distributed randomly on the corresponding cluster. Here the simula-
tions are based on a hybrid-multiple cellular automaton. The achieved speedup changes
between 2.09 (with 300 nodes) and 1.94 (with 600 nodes), shown in Fig. 6(b). Gener-
ally, the speedup can be influenced by two main factors: the basic simulation overhead
and the effectiveness of the cellular automaton system. On the one hand, the smaller the
cluster, the-greater the simulation overhead of each node, because the basic simulation
overhead of the system is constant. On the other hand, the greater the cluster, the fewer
overloaded nodes in the complete system and the less the cellular automaton system
can work effectively. Therefore, in these simulations the best speedup has been achieved
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Fig. 6. Speedup comparison between balanced and unbalanced simulations.

with a cluster of 300 nodes. The optimal size of the cluster changes with the simulation
parameters.

t e

6.1. Simulation with static distribution of applications

In this section, the result of a specific simulation will be shown. At the beginning, all
of three applications with 1200 processes were distributed randomly on a workstation
cluster consisting of 200 nodes (10 segments and 20 nodes per segment).

Fig. 7 presents a comparison of an unbalanced simulation (without using any load
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Fig. 7. Runtime comparison of balanced and unbalanced simulations.
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Fig. 8. Comparison of idle/underloaded and overloaded nodes.

balancing strategies) and a balanced one. The histogram in Fig. 7 shows the number of
processes. proposed by the cellular automaton A2 to migrate (see Section 4).

Because of the random distribution of new applications, the system is unbalanced
at the beginning of the simulation. Therefore, in the case of the balanced simulation, ~ =7
A2 produces migration proposals to balance the system load. After the system load is
balanced according to the proposals, A2 will be rarely activated. From the 17th cycle,
a lot of processes terminate and the system load becomes unbalanced. Therefore, A2
will be activated again..In this example, the balanced simulation needs only 27 cycles,
while the unbalanced simulation needs 69 cycles. That means, a speedup of 2.56 has
been achieved here.

Fig. 8 compares the number of idle/underloaded and overloaded nodes in the unbal-
anced and balanced simulations. Fig. 8(a) shows that almost all nodes are used at the
beginning of the balanced simulation. At about the 8th cycle, the termination of some
processes results in approximately 60 nodes becoming idle/underloaded. In contrast to
this, about 30 nodes are already idle/underloaded from the beginning of the unbalanced"
simulation. Fig. 8(b) shows that the system will be balanced after the 7th cycle. In the
unbalanced simulation, approximately 80 nodes are overloaded until the first half of the
simulation and there are always some overloaded nodes in the system.

6.2. Simulation with dynamic distribution of applications

Generally, new applications arrive randomly and independently. This can be considered
as a Markov process. Therefore, it has to be possible to distribute new applications
dynamically during the simulation time. Furthermore, the applicability and the efficiency
in the case of dynamic application distribution are two of the most important criteria
against which a method of dynamic load balancing should be evaluated.

For this purpose, we have defined a load description language to specify the simulation
parameters of applications, such as the size, the type and the start time. The following
is the result of a specific simulation in which five applications are started at the Oth,
Sth, 10th, 15th and 26th cycle respectively, on the same virtual workstation cluster as
that in the last section. The second application which is started at the Sth cycle has 400
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processes, and each of the other four applications has 200 processes.

Similarly to Fig. 7, the runtime of the unbalanced simulation and the balanced one
is compared in Fig. 9. Because only 200 processes are distributed at the beginning of
the simulation, there are almost no overloaded nodes at this moment and, therefore,
the cellular automaton makes no process migration proposal. After starting the second
application at the 5th cycle, a few nodes become overloaded and the automaton becomes
effective. This effect can be observed more clearly after the 10th and 15th cycle when
the third and forth applications are started. Between the 28th and 42nd cycle, because
no more application is started and the system load is well balanced, the automaton will
be rarely activated. However, from the 42nd cycle, a lot of processes terminate and the
system load becomes relatively unbalanced again. In this case, the second rule scheme
of the hybrid-multiple automaton begins to work.

In this simulation, the speedup of the first four applications can not be seen in Fig. 9
directly. But the last application started at the 26th cycle finishes at the 45th cycle with
load balancing and at the 66th cycle without load balancing respectively, i.e., a speedup
of 2.1 has been achieved.

Fig. 10 compares the number of normally loaded and overloaded nodes in the un-
balanced and balanced simulations. As explained above, during the first 5 cycles, there
are only 200 processes in the system consisting of 200 nodes. Therefore, the most of
nodes are underloaded or idle; in other words, there are only a few normally loaded
nodes and hardly any overloaded ones. In Fig. 10(a), it can be observed that the num-
ber of normally loaded nodes is much higher during the main phase of the balanced
simulation than in the unbalanced one. From the 28th cycle, the balanced curve goes
monotonously and sharply down and ends at the 45th cycle, while the unbalanced one
fAuctuates with a slowly falling tendency and ends at the 66th cycle. The reason is that,
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Fig. 10. Comparison of normally loaded and overloaded nodes.

from the 28th cycle, the termination of processes changes some nodes from overload to
normal load and results, sometimes, in increasing the number of normally loaded nodes
in the complete system.

Fig. 10(b) shows that, only when new applications are started at the Sth, 10th, 15th
and 26th cycle respectively, there are some overloaded nodes in the balanced simulation
and the automaton can balance the load in the system in a few cycles. In contrast to
this, in the unbalanced simulation there exist overloaded nodes during the most of the
simulation time; especially from the 16th to 28th cycle, about 30 nodes are overloaded.

7. Conclusions and extensions

In this paper we have presented a new idea for dynamic load balancing. Qur approach
is based on the application of “intelligent tables” which are realized by cellular automa-
ton systems [1]. Therefore, we developed different simulation shells: CASS [6] is a
specific simulation shell to develop complex cellular automaton systems and CABLE
simulates the behaviour of a workstation cluster with respect to dynamic load balancing
by cellular automaton systems.

Our strategy treats the load balancing task as a hybrid system. Calculation, storage
and evaluation of the load states are performed centrally (by the mapper) and the
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real process migration is done decentrally (by nodes). Such a combination can gain
the advantages of centralized and decentralized strategies with the goal of minimizing
communication overhead in the whole network. Our simulation results show that load
balancing strategies based on the theory of cellular automata can increase the system
performance significantly (a speedup from 1.75 to 2.70). This speedup is better than
that of some related approaches {7,11].

Kunz [7] provide an implementation of a task scheduler based on the concept of a
stochastic learning automaton on a network of five Sun workstations. About 900 artificial
executable tasks were created and executed on the five workstations to evaluate the
performance of his task scheduler with different workload descriptions (e.g., number of
tasks in the run queue, size of the free available memory, rate of CPU context switches,
rate of system calls, etc.). The workload descriptions characterize the load at each host
and determine whether a newly created task should be executed locally or remotely.
Without trying to balance the load, the mean response time of the whole system was
31.215 seconds. By using the number of tasks in the run queue as workload descriptor,
the mean response time was shortened to 13.576 seconds, i.e., a speedup of 2.3. The
speedup of the experiments in [7] ranges from 1.74 to 2.3.

In [11], Willebeek-LeMair and Reeves present five different strategies: SID, RID,
HBM, GM and DEM. The Sender (Receiver) Initiated Diffusion (SID/RID) strategies
are asynchronous schemes which only use near-neighbour information. The Hierarchical
Balancing Method (HBM) organizes the system into a hierarchy of subsystems within
which balancing is performed independently and ascends from the lowest level to the
highest level. The Gradient Mode! (GM) employs a gradient map of the proximities of
underloaded processors in the system to guide the migration of tasks between overloaded
and underloaded processors. Finally, the Dimension Exchange Method (DEM) requires
a synchronization phase prior to load balancing and then balances iteratively. All five
approaches have been implemented on an Intel iPSC/2 hypercube. Experiment results
for artificial loads on a 32 node iPSC/2 with a granularity of 100 tasks per node have
shown a speedup from 1.28 to 1.52. The RID strategy is considered the best one among
them.

Moreover, the main advantages of our strategy are the scalability, extensibility and
portability, because it is independent from any hardware architecture. The simulation
is just based on a virtual hardware configuration which is characterized by the perfor-
mance of the network and that of the computing nodes. However, the disadvantage of
a centralized load balancing strategy is the overhead to collect load state information
and to perform process migration. Therefore, a high performance network, e.g., FDDI,
whose time characteristics are strongly predictable, is necessary. In our system archi-
tecture (see Section 2), due to FDDI networks the computation effort needed by the
monitoring unit for calculating the communication and process load state is so little that
it can be ignored. The main computation effort is needed by sending migration proposals
extended our approach (2], in which a distributed cellular automaton system is defined.
Regarding massively parallel systems, a distributed cellular automaton system can be
realized by implementing the individual cells directly on the corresponding nodes. The
neighbourhood can be determined by the actual network configuration.
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Besides this extension, we just intend to implement our approach on a real network
by means of standard networking tools, e.g., etherfind and PVM. Therefore, we will
examine several different computing platforms for possible adaptations of our load
balancing strategy. Furthermore, we are extending our simulation shell CASS so that it
can be integrated with CABLE.

Because there is no trade-off between the hardware costs and the speedup factor, we
are preparing to realize our method by a specific hardware chip in order to exploit the
speedup potential. This work will be carried out in cooperation with the GMD (the
German National Research Center for Computer Science).
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