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ABSTRACT

Computer simulations have been conducted to provide a realistic model of tumor re-
currence in a cancer patient, following treatment. The simulation model incorporates
description of the temporal organization of various biological processes underlying tu-
mor development at the cellular level: proliferation, differentiation, death of tumor cells,
growth control in neoplastic tissues along with the tumor treatment effect. The prime
object of our concern is whether the simple parametric model of tumor recurrence pro-
posed by Hoang et al. (6] allows estimation of actual value of the tumor growth potential.
A good fit has been demonstrated of the parametric model when applied to the samples
of simulated tumor recurrence times as well as to real data samples of tumor recurrence
in breast cancer patients with various regimen of radiotherapy.
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1. Introduction

According to the stochastic model of tumor recurrence proposed by Hoang et al. [6],
the relapse-free time is thought of as a random variable with the following survivor
function

G(t) = exp{-0F(t)}, (1.1)
where 6 is the expected number of surviving clonogenic tumor cells, also known as
clonogens, after the treatment, and F(¢) is the cumulative distribution function for
the potential time of tumor progression, i.e., the time it takes a single clonogen to
propagate into a newly detectable tumor.

The idea underlying this model is very simple. At the end of treatment, the
number of surviving clonogens is assumed to be a Poisson random variable v with
expectation #. Let X; be the ith clonogen progression time. The nonnegative
random variables X;, i = 1,2,..., are assumed to be independent and identically

Corresponding author: A. Yakovlev, Department of Statistics, The Ohio State University, 141
Cockins Hall, 1958 Neil Ave, Columbus, OH43210, USA.

291




292  Jvankov, Tsodikov & Yakovlev

distributed with a common distribution function F(¢). The tumor latency time can
be defined as
U =min{X,;,0 <7< v},

where Pr{Xy = +o} = 1 and v is independent of the sequence X;,X,,... . It
follows from the law of total probability that the survivor function for the random
minimum U is given by formula (1.1). Given the time of tumor latency distributed in
accordance with (1.1), the probability of tumor cure is equal to G(+oc) = exp{—6},
its value being dependent solely upon the expected number of clonogens.

To describe a possible heterogeneity of clonogens with respect to the progression
time distribution, introduce & different types of tumor cells with distributions F}(t).
Then the progression time distribution F' is represented by a finite mixture

k k
F(t)=quFJ(t), 0<g; <1, qu=1_
Jj=1 j=1

This mixture of distributions yields the independent competing risks model for
the function G, i.e.,

k
G(t) = [ exp (- 6;F;(1)), (1.2)
Ij=1

where §; = 0yg; and 6, is the expected total number of viable clonogens of various
types existing in the treated tumor.

To put formulas (1.1) and (1.2) to practical use, it remains to specify the pro-
gression time distribution. In the work of Hoang et al. [6], preference was given
to the two-parameter gamma distribution by virtue of its flexibility and the fact
that this parsimonuous model, simple as it is, reflects a multistage structure of the
process of tumor development. Computer simulations conducted with a compre-
hensive model of tumor progression {7] add substantially to our confidence in using
gamma distribution for the function F(¢) in formula (1.1). In a like manner, one
may validate the basic structure of model (1.1) that describes the time to tumor
recurrence dependent on the number of surviving clonogens. This would call for an
extension of the simulation model, given in our previous paper [7], by incorporat-
ing a description of the tumor treatment effect. The main problem in question is
whether or not the simple parametric model of tumor recurrence allows estimation
of actual value of the tumor growth potential, i.e., the mean number of surviving
clonogenic cells. A computer simulation study described in Secs. 2 and 3 has been
undertaken to answer this question. Applications to the analysis of clinical data on
breast cancer are given in Sec. 4.

2. A Simulation Model of Tumor Recurrence

When constructing the model of clonal expansion we proceed from the following
premises:
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1. A proliferating cell. in its passage through the mitotic cycle, is delayed for
this cycle duration which is assumed to be a gamma-distributed random variable
with shape parameter § and scale parameter p . Thus the mean and the standard
deviation of the mitotic cycle duration are equal to + = % and ¢ = _\(p_g‘ respectively.
No possibility is allowed for a cell to enter the resting phase before mitosis.

2. As a result of mitosis two daughter cells arise which either retain the capacity
for further reproduction or become sterile and die the reproductive type of death.
Three possible outcomes of the mitotic cycle, for irradiated tumor cells, are taken
into account:

(i) both daughter cells retain the reproductive capacity;
(ii) both daughter cells are sterile;
(iii) one of the daughter cells is capable of proliferation. the other one is sterile.

Each of the above events occurs with the probabilities p;, p» and ps, Zle pi =1,
respectively. The sterile cell is delayed for a random time obeying the exponential
distribution with parameter A. After a lapse of this time the sterile cell is eliminated
from the clone.

3. Immediately after completion of the mitotic cycle every nonsterile cell goes to the
resting phase and stays there until it is stimulated to either proliferation or terminal
differentiation, the latter process resulting in the competence of a cell for specialized
tissue functions and eventually in its death. Initial steps of cell differentiation
(or maturation) are known to be reversible; they correspond to “deepening” of
the resting phase documented for cell cultures [1, 2]. We introduce three stages
of reversible differentiation, their durations being exponentially distributed with
parameter p. A cell loses the capacity for proliferation after its passage through
the third stage. The reverse process is modeled by the backward passage of a cell
through the stages already passed (including the one it is staying at the moment)
in the course of differentiation, and by its subsequent transition to the phase G,
of the mitotic cycle. The temporal parameters of forward and backward passages
are assumed identical. By dedifferentiation we mean transformation of a reversibly
differentiated cell into a proliferating one. This fits the concept of transformation
period detected in systems with induced cell proliferation [12]. The fraction, d ,
of the resting cells set off to differentiation is assumed to be constant in time and
independent of the total number of tumor cells.

4. To simulate the growth control mechanism operating in a neoplastic tissue we
specify the fraction of cells entering the mitotic cycle by

1

T TraNe (2.1)

where a and b are constants, NV is obtained by summing up the cells in all stages of
their life cycle, i.e., proliferating, differentiating , resting and dying cells. If the value
TN exceeds the current number of resting cells then some reversibly differentiated
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cells start the dedifferentiation process, the top priority being assigned to the cell
whose differentiation process is the least advanced.

To simulate the effect of fractionated irradiation the above assumptions are supple-
mented with the following ones:

5. Let a sequence of fractional doses D;, Dy, ..., D, represent the irradiation regi-
men. We begin with modeling the events occurring in a population of tumor cells
after the first irradiation. In doing so, we use a multihit-one target model of radia-
tion cell survival [10] specified by the following survivor function

[SV]
(8]
~—

m k
S(D) — Z (I}‘?’) e—;z:D ) (
k=0

where D is the irradiation dose, z is the mean number of hits per unit dose, m is the
critical number of hits a cell can bear without being killed. In applying expression
(2.2) of the dose-effect relationship to simulation of irradiated cell kinetics, we pro-
ceed from a somewhat different interpretation of its parameters which will become
evident subsequently.

With probability 1—S5(D,) every irradiated cell is classified as damaged, and with
probability S(Dy) it is considered as remaining undamaged after the first fractional
dose. The parameter m value is taken to be the same for all phases of the cell
cycle but the other parameter of radiosensitivity, z, is allowed to vary with the
position of a cell in its life cycle. To specify such variations a baseline value, zy,
of the parameter r is chosen. This value is multiplied by a scale factor with values
depending on the cell cycle phase. More specifically, we set this factor equal to 1.0,
1.5 and 1.0 for the phases G1,S, and G5 + M, respectively. For the differentiation
stages, as well as for the Go-phase, the factor is assigned a value of 0.5.

The second irradiation is simulated similarly, except that the parameter m is
set equal to 1 for all damaged cells and those found to be dead are eliminated from
the model (interphase type of death). The simulation model is designed in such a
way as to allow for a gradual increase of the parameter 4 for undamaged cells with
increasing the current total dose of irradiation. Both the undamaged and damaged
cells enter the value of NV in formula (2.1).

6. After every fraction of irradiation, each cell, no matter whether it is damaged
or not, is delayed in its passage through the mitotic cycle. The radiation induced
blocks G; —» 5,5 — G5,Gy — M are introduced in the simulation model under
discussion in much the same way as that was employed in the book by Yakovlev
and Zorin [11]. The delay time, T, for every block is dependent on the fractional
dose D;, the dependence being specified by the following simple formula

T=Ty(1—e"P), i=1,...,n,

where T and v vary depending on the mitotic cycle phase wherein a given cell is
exposed to the dose D;.
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7. The processes of repair or reproductive death occur just prior to the mitotic
division of a damaged cell. The enzymatic repair of radiation damage manifests as
the transition of a damaged cell to the pool of undamaged cells. The probability.
P, of this event is given by

ht?
1+ ht?’
where h is a positive constant, and ¢ is the time measured from the last irradiation.
With probability 7, every unrepaired cell is transferred to the pool of perishing
cells from which it is subsequently eliminated after an exponentially distributed
delay with mean 1/A. With probability 1 — n, the unrepaired cell splits into two
daughter cells entering the Gy phase immediately afterwards. Undamaged cells die
the reproductive type of death following the rules identical to those for unirradiated
cells (Assumptions 1-4).

P:Pmax

8. Each of a large number of tumors is initialized independently to contain a single
progenitor cell. Irradiation is initiated at a prescribed tumor size. With the simu-
lation of an irradiation regimen completed, the clonal growth of irradiated tumor
cells is simulated until the size, N, of a detectable tumor is attained. Replicates
of the simulation experiment yield an output sample consisting of times to tumor
recurrence measured from the last irradiation.

3. A Computer Simulation Study

In this study, a uniform regimen of fractionated irradiation was simulated, i.e. D; =
Dy = -+ = D, = D. The value of D was taken equal to 7 Gy (Grays). This
number should be considered as arbitrary though it provides, in combination with
other parameter values, a reasonably good description of reality. We are not striving
to produce quantitative results as close to a particular dose-effect relationship as
possible.

The following plausible values of the model parameters were prescribed: 7 =
24,0 = 74 (for the mitotic cycle phases: 7(G;) = 12,0(G,) = 6;7(S) = 7,0(S) =
3.5;T(G2 + A/I) = 5,0’(G2 + M) = 2.5),1‘0 = 1.5,T0(G1 i S) = 100,T0(S g Gg) =
140, T5(G2 — M) = 160,v(G1 — S) = v(S = Ga) = v(Gy = M) = 0.01, Ppay =
0.2,h =0.25,a =1.3x 107106 = 2.\ = 0.01, = 0.02,d = 0.2,p; = 0.95,p, =
0.04,p3 = 0.01,7 =0.5.

The value of N, was set equal to 10%. The irradiation was initiated when the
number of tumor cells attained a value of 0.8 x 106.

There is not a grain of evidence that the simple parametric model of tumor
recurrence, expressed by (1.1), will be consistent with data generated by the com-
prehensive simulation model. But this does happen as shown by results of the
computer simulations given below.

When the number of fractions was varied from 10 to 15, six samples were gen-
erated, each containing 950 values of the time to tumor recurrence. Each of the
samples was individually centered with respect to the initial recurrence-free period.
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With these samples the parametric model of tumor recurrence was validated, for
which purpose the c.d.f. F(t) in formula (1.1) was specified by the generalized
gamma distribution [9] given by the following expression for its density

_ Be(B exp{=(30)°}

£t o

(3.1)

Table 1. Testing the hypothesis: ¢ = 1.

Number of \2 - statistic Degrees of  Significance

fractional doses freedom level
10 1.0 1 p>03
11 4.4 1 p<0.05
12 4.4 1 p < 0.05
13 1.2 1 p>02
14 2.6 1 p>0.1
15 1.0 1 p>03

Being a hierarchical family of distributions, expression (3.1) includes the two-
parameter gamma distribution as a special case (¢ = 1). The hypothesis: ¢ = 1,
can be tested by the likelihood ratio test. Table 1 shows the results of testing the
hypothesis for every sample resulting from computer simulations. As is seen from
this table, in four cases out of six, model (1.1) appears to be statistically consistent
with simulations. This gives more grounds to use the gamma distribution for the
function F(¢) in formula (1.1). By way of illustration two (for n = 12 and n = 15)
estimates, based on model (1.1), and the corresponding nonparametric estimates of
the survivor function are presented in Fig. 1.

The dose-effect curve, depicted as a function of the number of dose fractions,
is given in Fig. 2. The most important result is shown in Fig. 3. Referring to
this figure, the application of model (1.1) provides a reasonable estimate of the
actual mean number of surviving clonogens. The estimated parameter 6 in (1.1)
only slightly overestimates the number of undamaged cells in this simulation study.
Considering the total number of irradiated tumor cells (damaged + undamaged),
only some of them may be clonogenic. As of now, there is no way in which such an
observation can be made except by conducting computer simulations.

4. Breast Cancer Data

In this section we apply the model of tumor recurrence given by (1.1) to real clinical
data. Shown in Table 2 are the estimates of the model parameters for three groups
of patients treated for cancer of the breast in the Kharkov Institute of Medical
Radiology (Prof. T. P. Yakimova). All these patients underwent radical mastectomy
with axillary lymph node dissection. For Group 1, radiation therapy was initiated
following surgery, the order being reversed for Groups 2 and 3. Patients of Group
3 were given radiotherapy in large fractions (each fractional dose of 5 Gy) with the
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Fig. 1. Parametric versus nonparametric estimation of the survivor function. Solid lines — para-
metric estimates, stepwise curves — the Kaplan-Meier estimates accomodated for grouped data.
Upper curves correspond to the number of fractions n = 12, lower curves are given for n = 15.
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Fig. 2. The proportion of surviving tumors as a function of the number of fractional doses.
Computer simulations.
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Fig. 3. Estimation of mean number of clonogens.

1. — the total number (damaged + undamaged) of surviving cells after a fractionated irradiation.
2. — the predicted number of surviving clonogens given by the estimated value of 8,
3. — the number of undamaged cells.

Table 2. Estimates of the model parameters obtained from breast cancer data.

Estimates and 0.95-confidence intervals Hjort test

Group of

patients é]_ a1 Bl é'z Go ,éz X2 d.f.

Group 1 0.97 2 0.07 - - - 1.8 11
(325 patients) +0.15 +0.4 +0.02

Group 2 0.49 2 0.1 3.5 3 0.02 10.9 10
(292 patients) +0.20 +0.20 +0.02 +28.4 +6.6 +0.15

Group 3 1.09 2 0.017 - - - 13.6 10

(151 patients) +2.21 +1.2 +0.04

d.f. — degrees of freedom

total dose to the tumor being equal to 25 Gy. For Groups 1 and 2, conventional
irradiation regimen was used with the total dose of 50-55 Gy given in 2-Gy fractions.
The dose of irradiation delivered to regional lymph nodes was nearly the same for
the three groups of patients. The data include local failure times and the censoring
index value. We will take the gamma distribution, given by

B a1 —pe
i@, ) = ——t° ¢ 0,
w(t;a, B) lﬁ(a)t e 7", ya, B>
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for the progression time distribution in all the computations that follow. The fol-
lowing notation will be used:

f — the mean number of surviving clonogens.
T = /3 — the mean progression time,
o = y/a/3 — the standard deviation of the progression time.

In some cases model (1.2) for & = 2 will be used to represent a mixture of two
subpopulations (fractions) of surviving clonogens. The parameters 6, a, 3, Tand o
will then be indexed by the number of the fraction to which they correspond. For
testing the goodness of fit. we use the statistical test developed by Hjort for censored
observations [5].

1.0 4

0.5 1

0.0

50 100 150 200 250 300
Time (months)

Fig. 4. Disease-free curves for breast cancer (Group 1). Solid line: parametric estimation. Step-
wise curve: the Kaplan—-Meier estimate.

It follows from Table 2 that the goodness of fit test indicates a very good agree-
ment between the one-component model of tumor recurrence and the corresponding
data for Groups 1 and 3. The estimated survivor functions for these groups of pa-
tients are given in Figs. 4 and 6. The results for Group 1 shown in Fig. 4 are not
without strong appeal. Even leaving aside biological considerations, it is not easy
to invent a sufficiently simple model that would provide so excellent quantitative
description of this sort of data. However, when applied to Group 2, the Hjort test
rejects the model at a significance level of much less than 0.001. Once the sec-
ond subpopulation of clonogens has been introduced, the model becomes consistent
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Fig. 5. Disease-free curves for breast cancer (Group 2). Solid line: parametric estimation. Step-
wise curve: the Kaplan-Meier estimate.
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Fig. 6. Disease-free curves for breast cancer (Group 3). Solid line: parametric estimation. Step-
wise curve: the Kaplan-Meier estimate.
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with observations (p > 0.3). Both parametric estimates of the survivor function for
Group 2 are depicted in Fig. 5.

To compare different treatment groups, use was made of three nonparametric
statistical tests of homogeneity [3, 4. 8]. Group 3 differs significantly from the other
two, the hypothesis of homogeneity being rejected at a significance level of 0.001 by
all the above mentioned tests. For Groups 1 and 2. the only test that allowed us
to reject the null hypothesis was a modified Kolmogorov-Smirnov test proposed by
Fleming et al. [3].

The treatment used for patients of Group 3 appears to be superior to those re-
ceived by patients of Groups 1 and 2. This can be explained by slower progression
of surviving clonogens (Table 2) when the course of irradiation consisted of large
fractional doses. For Group 2, a rapidly developing (1, = %f‘ = 20 months) subpop-
ulation of clonogens may be responsible for poor therapeutic efficiency. It seems
likely that radiation therapy given in small fractions before surgery is incapable to
block the development of an agressive cell clone that may manifest itself after the
treatment. Another part of the explanation is that a higher total dose of irradia-
tion given in small fractions might more heavily depress the immune and defensive
responses of the organism.

For Groups 1 and 3, the possibility of using the gamma distribution to describe
the progression time may be tested within the hierarchical family of distributions
given by (3.1). The likelihood ratio test gives Y* = 0.4 for Group 1 and y? = 1.8 for
Group 2 on one degree of freedom. This is a significant indication that the selected
approximation is satisfactory.
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