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ABSTRACT A distribution of tumor size at detection is
derived within the framework of a mechanistic model of
carcinogenesis with the object of estimating biologically mean-
ingful parameters of tumor latency. Its limiting form appears
to be a generalization of the distribution that arises in the
length-biased sampling from stationary point processes. The
model renders the associated estimation problems tractable.
The usefulness of the proposed approach is illustrated with an
application to clinical data on premenopausal breast cancer.

Section 1. Introduction

Thus far, little consideration has been given to the process of
tumor detection in mechanistic models of carcinogenesis. The
presently most widely accepted two-stage model of carcino-
genesis, usually referred to as the Moolgavkar-Venzon-
Knudson (MVK) model (1, 2), is focussed on the events that
precede the occurence of the first malignant cell in a tissue. An
explicit description of the stage of tumor progression is
obviated in the MVK model. This pertains equally to the model
of radiation carcinogenesis by Klebanov et al. (3) and its
generalization thereof by Yakovlev and Polig (4). This is no
surprise, since an extended three-stage model meets with
identifiability problems when applied to the analysis of time-
to-tumor observations. An extra source of information must be
called on to make estimation problems tractable. Yakovlev and
Tsodikov (5) suggested to use the data on tumor size at
detection for this purpose. They introduced a thresheld coun-
terpart of the model developed in ref. 3 to accomodate this sort
of data. In Section 2 of the present paper, we proceed from the
same idea to derive the conditional distribution of tumor
voiume at detection given a tumor is detected at time ¢, which
involves biologically meaningful parameters to be estimated
from clinical data. As shown in Section 3, the limiting form of
this distribution appears to be free from distributional assump-
tions on the promotion stage duration. We study the stability
of the model with respect to the prior distribution of tumor size
in Section 4. The statistical inference from bivariate data on
tumor size and age at detection is discussed in Section 5, along
with a relevant example of real data analysis. As evidenced by
our findings, the approach holds much promise for the analysis
of tumor latency and risk assessment. Some other ways of
relating the chance of detecting a tumor to its size are discussed
in refs. 6 and 7.

Section 2. A Model of Spontaneous and
Induced Carcinogenesis

We proceed from the following basic assumptions.
(i) The occurence of initiated cells (primary lesions) is
thought of as a homogeneous Poisson process with intensity 6.
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This assumption is common to all stochastic models of carci-
nogenesis. ‘

(if) A primary lesion remains dormant while proceeding
through the promotional stage of tumor development. Let R(¢)
be the cumulative distribution function (CDF) of this stage
duration. All lesions are subject to promotion independently of
each other, each of them passing the same route. This assump-
tion generalizes the MVK model as long as the CDF R()
remains uspecified. The results presented in Section 3 are free
from the form of this distribution.

(itf) Once the first malignant cell arises as a result of tumor
promotion, its subsequent growth is irreversible and the pro-
gression stage begins. It is this clonogenic cell that gives rise to
an overt tumor after a lapse of time.

(iv) A tumor becomes detectable when its size attains some
threshold value, N, which is treated as a random variable (RV).
It is practical to represent the critical number of tumor cells as
N = ¢V, where V is the volume of a tumor, and ¢ is the
concentration of tumor cells per unit volume. The constant ¢
is nonrandom, and its values are typically large. In applications,
the value of ¢ is frequently taken to be approximately equal to
109 cells per cm? (6). We use a linear pure birth process with
the absorbing upper barrier N to model the dynamics of tumor
growth. Under this model the conditional progression time
CDF, given the threshold volume V' = v, is

F(tlv) = (1 = ™)<, 1]
where A is the birth rate. Formula 1 implies that tumor growth
starts from a single malignant cell at time ¢ = 0.

Let'L(z) be the CDF of the time it takes for the initiation and
promotion processes to result in the first malignant cell. When
studying spontaneous carcinogenesis, this time is measured
from the date of birth of arrindividual. Derived from the above
assumptions is the following expression for the corresponding
survivor function L(t) = 1 — L(¢):

L(r) = exp —OJ R(x)dx }; (2]

0

see ref. 3. The MVK model is a special case of Eq. 2 with the
CDF R(¢) specified by a homogeneous birth—death model of
clonal expansion (8). Let f(¢[v) stand for the probability den-
sity function (PDF) of F(¢[v). Assuming that the stages of
promotion and progression are mutually independent, we use
the convolution

gtlv) = j 'R(( — u)e ™ RWES(|y)du (3]

0

to represent the conditional PDF, g(t]v), of the time of tumor
latency measured from the date of birth. -

Abbreviations: MVK, Moolgavkar-Venzon-Knudson; CDF, cumula-
tive distribution function: RV, random variable; PDF, probability
density function.
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[ntroducing a prior distribution, P(v), of the RV V, we
represent the PDF of the time (age) of tumor detection as

gt) = j 8(tv)p(v)dv, (4]
[¢]

where p(v) is the density of P(v). The posterior PDF, w(v|t),
of tumor volume at detection, given a tumor is detected at time
¢, is obtained from Bayes’ formula

wivl) = gtv)p(v) _8gvp(v) ’ (5]
» g(t)
g(tlu)p(u)du

0

where g(tlv) and g(¢) are given by Egs. 3 and 4, respectively.

In the event of induced carcinogenesis the time of tumor
latency is measured from the time of exposure to a carcinogen.
We consider only brief exposures though protracted exposures
can be easily accommodated within this framework (3). As
shown in ref. 3, formula 3 s replaced with

L(r) = ¢ R0, (6]

where 0 is the mean number of lesions induced by a given dose
of carcinogen. Unlike the distribution given by Eq. 2, distri-
bution 6 is improper. Using formula 6 in place of 2, we retain
the model structure given by formulas 1, 3, 4, 5 in the case of
induced carcinogenesis.

The above formulas are quite cumbersome, making the
model application difficult. Fortunately, the conditional PDF
w(v|t) assumes a much simpler form when ¢ tends to infinity.

Section 3. The Limiting Form of w(vit)

It follows from Eqgs. 1 and 3 that in the case of spontaneous
carcinogenesis

t
gltlv) = )Lﬂcvf e M= e MmN =1p(5)e = 8fa R 4
0

= Aevg(t).  [7]
THEOREM 1. The following assertions hold for the limiting
behavior of the function ¥(t) as t — +oo:
(1) If A < 9, then
Y(t) ~ Ie™™, (8]

where
sz ers—af; R(x)de(S)dS.
0

(2) If A = 8 and [3[I - R(s)|ds < oo, then
Y(t)~te Mo R(x)dx {9]
(3) If A > 8, then
Y(t)~Je~OlaR(x)dx (10]

with

1|1 !
I=3 f YT (1=y) "y = 2B(ev, 21~ 6/),
1]

where B(x, y) is the beta function.

Proc. Natl. Acad. Sci. USA 93 (1996)

The proof for large values of cv is given in ref. 5, 4,

alternative and more efficient proof is based on the fo[]owjng
lemma.
LEMMA. Ler K(t, s, u) be a bounded measurable function
defined for t = s = 0, u = 0 and such thar K(t, s, u) — a g5 t
S, U, = . Also, let h be a positive continuous function such that
lim . h(t = u)/h(t) = 1 for every u = 0, and [3 h(u)du = »
Denote H(t) = [§ h(u)du. Then

1 t
%j; K(t, t—u, u)h(u)du—a, t—0,

This lemma will be used below to prove a similar theorem for
the model of induced carcinogenesis.

Taking up formulas 5 and 7 with () given by Egs. 9 or 10,
we can write

lim w(vlt) = ““—EVP(V) ,

=0

(11]
up(u)du
0

Now the fact that cv is large can be taken into account. Using
the Euler-Gauss formula

lim (ev)!=%*B(cv, 1 - 9/A) = T(1-86/A),

v

0 <A,
(12]

and the Lebesgue theorem on bounded convergence, it follows
from Egs. 5, 7, and 10 that

vs/x (v)
wvlt) ~ ——22

u®p(u)du
0

[-—-)00, CV —> @,

(13]

for A > 6. Combining Egs. 11 and 13, we obtain the limiting
conditional PDF of tumor size at detection

lim w(vlr) = — 28

)
, ,u.=min{1,—}. (14]
(s A
utp(u)du

1

A special case (u = 1) of this distribution is associated with
what is known as a length-biased sampling from stationary
point processes (9). :

Along similar lines the case of induced carcinogenesis can be
considered. In this case

4
g(tlv) = ,\chJ’ e TATI(] — gmMIm) L0 = 0RG)
0

= AOcvi(t), [15]
where r(¢) is the density of R(r).

THEOREM 2. Let o := sup {a: [ e*T(s)ds < ®}, ) < g = =
(1)IfA<corA=oand [ e”sr(s)ds < ®, then

wO(t) -~ lle—l\la

where [ = [§ e*sr(s)e ~fRG)ds,
(2) Let A = o and [3 e™t(s)ds = x. Suppose that the function
£(s) is positive and continuous for s > 0, and that the function
h(s) := e®r(s) has the property

{ —> [16]

)
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B0 )
>
(z_fz h(D) for every u=0. 17
Then
Yo(t) ~ (e X9, t e, (18]

where Io(t) = [§ e”r(s)ds.
(3) Let X > a. Suppose that t(s) is positive and continuous for
s > 0and that h satisfies Eq. 17. Also, suppose that the function
h is either nondecreasing or it is nonincreasing and subject to the
following conditions:

(3a) h(t)/h(2t) = C for some constant C;

(36) [§ h(s)ds < e
Then

o(t)~T5r(2) [19]
where I3 = (e7%/X) [5y¥~!(1 — y)=/* dy = (e~%/A) B(cv, !

- o/A).
Proof: (1) We represent the function yi(z) (see Eq. 15) in the
form

bo(t) = e'*‘f fi(s)ds,
Q

wliere
fls) = e¥(1 = ™M@= lr(5)e =0RG v (s),

and xo,)(s) is the characteristic function of [0, ¢]. Clearly, for
every s > 0

fs) 1 fls) := eXr(s)e ~ 9RO, t — o,

and Egq. 16 follows from the Lebesgue theorem on bounded
convergence, observing the fact that in our case the function
f is integrable.

(2) We have

Polt) = e““*"’me(t — 5, 5)h(s)ds,
0

where K(u, 5) = (1 — e=M)e=1 ¢#1-RO)] and A(s) is defined
above. Observe that 0 < K(u,s) =eand K(u,s) = 1 foru,s
— . Applying the Lemma, we get Eq. 18.

(3) By the change of variable u = ¢ — 5 in Eq. 15 we represent
o(s) as

(po([) = ,.([)e—efte—(/\—a)u (1 _ e-,\u)cv—l MCQI—R(I—u)]du
i "0

= r(t)e""fgl(u)du.

0
For every u = 0, we have by Eq. 17
8u) > g(u) 1= e A= —g=ryev=1" L& [20]

and it is clear that [§ g(u)du < =. If & is nondecreasing, then
8:(u) = e? g(u), and the Lebesgue theorem yields

: - L[
fg,(u)du —’f glu)du = ...J' yer!
A
0 Q 0

(1"}')_"“‘1’}’» {— >,
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Now suppose that 4 is nonincreasing. Observe that

h(t - u)

—(A-=cJu+d
glu)se PO

Sus=sy,

Hence, for 0 < u =< ¢/2 we have from condition 33:

h(t/2)
—{A—aqu+@ —(A-alu+é
slu)=e S Ce ,

Then by the Lebesgue theorem and in view of Eq. 20,

t/2 =
j gu)du —'J’ glu)du, -,
0

0

Next, invoking 3b we find that

t eﬂ—(k—a')I/Z /2 e&—(z\—ajr/z
g,(u)du = —W h(s)ds = W
/2 0

1
[f h(s)ds + %h(l)}.
0

Note that condition 3a and monotonicity of 4 imply that h(t)
= At~% for some constants A, § > 0. Combining this with the
previous estimate, we conclude that [}, g(u)du — 0, and
therefore [§ g(u)du — [5 as t — o,
Remark: 1t can be verified that Theorem 2 applies to many
parametric families including the Weibull and gamma distri-
butions.

The above theorem imposes fairly mild restrictions on the
PDF r(z) and enables us to formulate the basic result in terms
of the conditional PDF of tumor size at detection

vip(v
lim w(v|t) = —L, n= min{ L E} , [21]
(=t = A
u"p(u)du
0

which bears close similarity to the one obtained within the
framework of the spontaneous carcinogenesis model (formula
14) with the parameter 7 being a counterpart of the parameter
w = min{1, 6/A}. K

Section 4. The Model Stability

In studying stability of the posterior PDF of tumor volume at
detection under perturbations in the prior PDF p we proceed
from Eq. 5 and a natural assumption that

Nq(p) := J'mu"p(u)du <o, [22]
0

where a = w or 7 for spontaneous and induced carcinogeneses,
respectively. Accordingly, we use the metric

pa(p, p) = j u®p(u) — p(u)ldu, a>0 [23]
0

to measure the distance between the “true” PDF p and its
perturbed counterpart 3. )

For spontaneous carcinogenesis in the case A < 6, it can be
easily envisioned from Eq. 7 that g(v|t) = C(t)v, where

C(¢) = Abcle™™; (24]




6674 Statistics: Yakovley ez al.

see Eq. 8. For A = 6, the same is true with
C(t) = Xfcre ~MuRtidx, [25]

In the remaining case A > 6 we have due to monotone
convergence in formula 12 the estimate gtlv) = C(eve/A,
where

‘ 6
C(t) = Gcg/*I’(l - X)e—fUBRC‘)d-‘_ [26]
In the case of induced carcinogenesis, we infer from Eq. 15 that
if A < o then g(tlv) = C(t)v with
C(¢) = XBcle™M, [27]

where [, is defined in Eq. 16, while for A = o the same estimate
holds with

C(t) = Xbce ~MI,(1); (28]

see Eq. 18. Finally, in the case A > o we obtain, assuming that
the density 7 is bounded [by M(r), say] and using monotone
convergence in Eq. 12, the estimate g(tlv) = C(t)v/, where

Ct) = Gc"/“M(r)F( 1- %) . [29]

Hence we can state that in any case
g(tlv) = C(t)ve [30]
Denoting
A = f gepvydv, A4, := f gep)pvidv, (31]
0 0

and using Egs. 21 and 30, we have

gu)p(v), - gev)

TLA,—A(H ” By —pv)|

C(t)p. (5, Cle)v
= #g(ﬂvm(l’) + %v—ip'(w - p(v)l,

#(v) = w )] =

where wi(v) 1= w(v|e), w,(v) := w(v|r). Integrating in v we get

2C(2)

po(W,, W) 1= j. IVD(V) - W(V)'dv = Tpa(ﬁ:P)-
0 ¢

By setting C(¢) = 1 we obtain a similar estimate for the
distance between the limiting PDFs w and w.

We summarize these results in
THEOREM 3. Let « be equal to p or v defined in the cases of
Spontaneous and induced carcinogeneses by Egs. 14 and 21,
respectively. Let p, be defined as in Eq. 23.
(1) For every t > ¢, ,

. 2C(t) .
po(wn W,) = A por( P: p)v
t

where C(t) is specified by £qs. 24-39 and A is defined by Eq. 31
(2) For the limiting PDFs we have

T2
po(W, W)Smpa(fx p),

where N(p) is given by Eq. 22,

*
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The metrics pg and p, have different topological structyreg
( 10). To make the estimates in Theorem 3 uniform, one cap use
the inequality: for any & > 0

pa(2, 8) = (polp, )TN arolp) + Noo (5) o5,

assuming the existence of finite (a + £)-moments forp and j
This would result in the following estimate:

€
polw, W) = const(t, &)po(p, p)a+e.
Section 5. Estimation Problems and Data Analysis

The model offers the prospect of estimation of some biOlOg-
ically meaningful parameters responsible for the temporal
organization of tumor latency from bivariate data on tumor
size and age at detection for patients diagnosed with a specific
cancer. This approach implies sampling from the joint distri-
bution of tumor size and age at detection which may be
warranted if the effect of data censoring due to competing risks
is negligible. As our numerical experiments suggest, this
appears to be the case for at least some judiciously chosen
parameter values if the competing risk of death from ali other
causes is independent of the one of interest. Assuming that
data arise from the joint PDF g(v, t), we represent the
log-likelihood as

€= Dloggtlv) + Dlogp(v) = ¢, + ¢,.

{ {

where ¢; and ¢, can be maximized independently of each other.
This offers the empirical distribution function, P(v), for esti-
mation of the CDF P(v). Alternatively, additional parametric
assumptions can be invoked to specify P(v), and the resuits of
Section 4 ensure the model stability under small perturbations
in this distribution. It is noteworthy that the presence of an
independent competing risk leaves the form of w(v|t) unal-
tered; that is the parameter w (or 1) can be estimated
independently of the other parameters from a subsample of old
individuals. Let n be this subsample size. Based on Eq. 14, the
log-likelihood function is

€)= wJlog v, +. 2, log p(v) = n log E(V¥).

i=] i=1

Therefore the maximum likelihood estimator, f, of the pa-
rameter . can be obtained as a solution of ‘the following
equation
E(V*logV) 1<
— == | i
E(V%) n‘Z‘ o8

The left-hand side of this equation is strictly monotonic in p.
and thus the equation has a unique solution. Actually, by
applying the Cauchy-Schwarz inequality we see that

d (E(V“ log V) _
du\ E0#) )T
E{v* (log VE(V*} - (E{V* log V) _

0,
(E{y#})?

where the inequality is strict except for the trivial case of a
degenerate RV V., .

We applied this method to clinical data on the primary
tumor size for 2129 premenopausal patients diagnosed with
stage [-III unilateral breast carcinoma. The subcabort of
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patients is described in ref. 11. The adequacy of the limiting
PDF w(v{t) was explored through testing the hypothesis of
conditional independence of the size, V, and the age, A4, at
detection given 4 > (*, where the value of ¢* is to be
estimated from the given sample. This was accomplished by
applying the Spearman test to various age strata. With the data
under study, this procedure resulted in the value of ¢* = 50
years. When applied to the whole sample, the Spearman test
rejects the independence hypothesis, and hence the hypothesis:
w = 0, at a significance level much lower than 0.001. The
maximum likelihood estimate of the parameter p obtained
from the group of 536 patients older than 50 was found to be
i = 0.1054 with the asymptotic 0.95 confidence interval (0,
0.229). An extended analysis of this data set based on the
proposed model will be addressed in another paper.
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