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Mathematical Analysis of Cell Shape
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Cell motility involves translocation of the cell’s centroid as well as changes or dis-
tortions in the cell’s shape. Clues about the mechanism of cell movement may be
obtained from information about its shape changes in time. The changes occur in
multiple dimensions and can be highly periodic, however they may elude superfi-
cial observation. The techniques outlined in this contribution might help to reveal
otherwise undetectable periodic shape changes.

The methods described here are appropriate for the analysis of spatio-temporal
changes of closed shapes, such as cell outlines. They require an angular parametri-
zation z(yp,t) of the outline (for every angle ¢ and time t) refering to a suitably
chosen point or area lying inside the cell. The methods are particularly suitable for
qualitative and quantitative description of the lamellar dynamics of single motile
cells with a distinct cell body and a flat periphery around it (e.g. human epidermal
keratinocytes) but also for more amoeboid cells.

1 Representation of the outline

The parametrization of the outline depends on the particular problem to be analysed.
In order to describe single motile amoeboid cells, the following parametrizations are
suitable:

For an unbiased analysis of the spatio-temporal dynamics of the cell periphery, the
representation of the cell outline has to be chosen independently of cell translocation.
A parametrization z(y) in polar coordinates around the centroid of the cell seems
a good choice. The location of the centroid is given by the two first order physical
moments (Mg, mo1) of the cell:
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where Z is the cell area and f(z,y) the mass distribution within Z. For cells with
distinct cell body and flat lamellae, the choice of two different constant weights for cell
body and flat periphery, reflecting the mass difference between them (e.g. f(z,y) =1
for the cell body, f(z,y) = 1/20 for the lamellae) reduces the bias on the location
of the centroid due to widely extended lamellae. In case the cell body is indistinct,
f(z,y) = 1 may be chosen. If the cell has a flat lamella, but data on shape and
location of the cell body are not easily available, its outline may be approximated by
using information from the peripheral cell outline and the location of the cell body
at the beginning of the time sequence. The cell body may be regarded as an inert
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cell region that changes shape and position only if its outline comes into conflict with
the peripheral cell outline because of global shape changes or cell translocation, for
details see (Brosteanu 1994).

If the cell has an elongated shape, the bias due to deviation from a circular
shape may be reduced by representing the cell outline z(y) for every angle ¢ as
distance in the normal direction from the weighed momental ellipse of the cell; see
Hinz & Brosteanu, 1.2 this volume, Fig. 2. The weighed momental ellipse is defined
by the centralized (around the centroid) second order physical moments, u20, o2
and p11,
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This weighed momental ellipse has the same moments of second order as Z and ap-
proximates the shape and orientation of the cell body (cf. Alt et al. 1995).

A topographic line plot of the three-dimensional data set of z(yp,t), with protru-
sions represented as elevated regions, gives a preliminary insight into the lamellar
dynamics; see Hinz & Brosteanu (I.2 this volume, Fig. 3).

2 Angular Fourier analysis

The angular Fourier analysis of the outline
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provides a decomposition of the shape in symmetrical, k-modal components given
by sin(ky) and cos(ky). The time course of the coefficients a; and b; (and perhaps
az and by) reflects the main shape changes. A plot of the path of ar versus by
reveals characteristic features such as rotating waves and standing pulsating waves
(see Hinz & Brosteanu, 1.2 this volume, Figs. 4C & F). In the case of rotating waves,
Eqn. 4 with decomposition into shifted cosine functions may be used to describe the
angular drift of the wave (by the shift coefficient k), the coefficient ck(t) quantifies
the contribution of the k-modal component to the global cell shape at time ¢t. Thus,
ci(t) > ck(t) (k # 1) indicates situations with a single outstanding lamella, whereas
c2(t) > ck(t) (k # 2) shows coexistence of two antipodal lamellae.

3 The Karhunen-Loéve expansion

One particularly interesting way to extract the slaving modes from long sets of data
is by reducing them by the Karhunen-Loéve expansion (Fuchs et al. 1988, Friedrich
& Uhl 1992; Krischer et al. 1993, Killich et al. 1994). For this purpose, one averages
the distances z(y,t) from the origin (e.g. the cell centroid) to points on the two-
dimensional boundary or margin (g, z) in the angular direction ¢ for each of a series
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of “snapshot” images of the cell, taken at frequent intervals of time. The actual
distances z(p,t) may then be decomposed into the temporal averages D(y) and
their actual deviations d(p,t), which in fact represent the shape of the cell’s two-
dimensional periphery: ’

2(p,t) = D(p) +d(p,1). (5)
The set of distances d(@i,tm),7 = 1,2,..., N, forms a N-dimensional vector d(t),
where N is the total number of points on the cell’s margin, measured at times
tm, m = 1,2..., M. This vector d,(t) represents the temporal development of the
cell’s margin in the direction . The temporal developments of the margin in any
two different directions ¢; and ¢; are explicitly correlated. The strength of this
correlation is the scalar product of the vectors

dl(t) = (d((pﬁtl)) o d(pi, ti\f)) and dJ(t) = (d(th) tl)) KR d(‘,ﬂj, tIW))
divided by M:
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This allows one to obtain a so-called correlation matrix R = (ri;). IV eigenvalues
ex,k=1,2,..., N, belong to this matrix as well as N corresponding eigenvectors

sk(p) = (se(@1), -+, sklen)). (7)

This set of N eigenvectors sk () represents an optimal set of discrete functions, which
embody a description of temporal changes in the cell’s shape.

A measure of the contribution of each eigenvector sk (i) to the actual shape of the
cell’s margin is the scalar product ck(t) of the eigenvector sk(p) and the vector

dm(p) = (d(@1,tm), -, d(@oN,tm))

which is constructed from all deviations d(@i, tm),4 = 1,2,..., N, at time tn. If ck(t)
is close to zero, the eigenvectors sk(p) and dm(p) are almost perpendicular. This
circumstance indicates that the contribution of sg() to the actual shape of the cell
margin is negligible, because the two-dimensional shape of the cell is the sum of the
eigenvectors s (p) weighted by ck(t). Otherwise, if the vectors sk(¢) and dm(p) are
nearly parallel, the cx(t) values will differ strongly from zero and it will be necessary
to take into account the contribution of sk(y) to cell shape (from P. J. Plath in
(Killich et al. 1994), see also (Vicker & Xiang, 1.3 this volume)).

4 Angular-temporal autocorrelation

The correlation patterns of the outline z(¢,t) are described by the autocorrelation
function:

c(a,7) = Ege | (2(0,t) = Baelz(p,1)]) - (z(0+ et +7) = Egelz(p,t)) | (8)

where E,¢[]] is the expectation value over ¢ and ¢. c¢(c, ) provides a measure for
correlation of the outline in angular distance a (0 < o < 27) and temporal dis-
tance 7 > 0. ¢(0,0) is the variance of the outline extensions z(yp,t). High values of
the instantaneous angular correlation c¢(a,0) characterize the width of protrusions,
whilst high values of the temporal correlation at the same angular position, ¢(0, ),
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characterize the duration of protrusions. Local maxima or elevated areas of c(a, 7)
at a > 0 and 7 > 0 show typical spatio-temporal periods between protrusions.

The autocorrelation analysis reveals typical features of cell shape changes over time.
Periodic or regular patterns as alternating standing waves or travelling waves are
detected and quantified; see Hinz & Brosteanu (I.2 this volume, Fig.4).

5 A comparison of the methods

Angular Fourier and Karhunen-Loéve analyses are both based on the decomposition
of cell shape using either sine and cosine functions or the shape eigenvectors, respec-
tively. Both methods yield the temporal dynamics and relative contributions of each
of the modal components which sum up to determine the shape of the cell periph-
ery, and are suitable for qualitative comparison between different cells and between
different “snapshots” of a cell. The Karhunen-Loéve expansion, in its dependence on
the eigenvectors of the individual cell, is of particular usefulness in the identifica-
tion, quantification and comparison of the shape-relevant protrusion in case of cells
with irregular shapes, where Fourier analysis shows no dominating component. On
the other hand, Fourier analysis has the advantage that the k-modal components
involved in the decomposition do not depend on the individual cell, and so Fourier
analysis allows for quantitative comparison of the dominating modal components
between cells. Autocorrelation analysis gathers information on the angular-temporal
dynamics of the shape and enables not only detection of periodic patterns, but also
quantification of the mean periodicity of shape changes.




