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Abstract

This paper discusses the distribution of tumor size at detection derived within the
framework of a new stochastic model of carcinogenesis. This distribution assumes a
simple limiting form, with age at detection tending to infinity which is found to be a
generalization of the distribution that arises in the length-biased sampling. Two
versions of the model are considered with reference to spontaneous and induced
carcinogenesis; both of them show similar asymptotic behavior. When the limiting
distribution is applied to real data analysis its adequacy can be tested through testing
the conditional independence of the size, V, and the age, A, at detection given
A>t*, where the value of /* is to be estimated from the given sample. This is
illustrated with an application to data on premenopausal breast cancer. The proposed
distribution offers the prospect of the estimation of some biologically meaningful
parameters descriptive of the temporal organization of tumor latency. An estimate of
the model stability to the prior distribution of tumor size and some other stability
results for the Bayes formula are given.
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1. Introduction

A stochastic model of radiation carcinogenesis proposed by Klebanov et al. [13]
has proved to be an effective underpinning for the statistical analysis of time-to-
tumor observations [25]. The model incorporates biologically meaningful parameters
and is sufficiently simple to make the associated estimation problems tractable.
Additional advantages of this model are that censored observations are easily
accomodated and that the asymptotic likelihood theory can be invoked for
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statistical inference from real data. An optimal invariant estimator of the survivor
functions produced by the model was constructed in such a way as to minimize the
expected quadratic risk [14]."A similar model structure was used to describe the
processes of spontaneous carcinogenesis [25], ageing (23, 26], and hormesis [27]. The
model has been extended by Yakovlev and Polig [24] to allow for radiation-induced
cell killing to compete with the process of tumor promotion. This generalization, still
quite simple as it is, endows the model with the capacity to explain a wide range of
experimental findings documented in the radiobiological literature [24]. At the same
time, neither the original model by Klebanov et al [13] nor its modification
proposed by Yakovlev and Polig [24] provide an explicit description of the stage of
tumor progression which is known to involve proliferation of promoted cell clones.
Having been developed with an emphasis on the temporal aspect of tumor latency,
these and many other models of carcinogenesis do not allow for any specific
characteristics of tumor growth. With rare exceptions [5,7,15,25,29], the mechan-
ism of tumor detection is also obviated in modern models of carcinogenesis. This is
not particularly surprising, since the information contained in time-to-tumor data is
likely to be inadequate to allow identification of a more complex model of the
process of tumor development. In other words, the problem calls for an extra source
of information, which presumably might be provided by the data on tumor size at
detection [25].

A few attempts have been made to relate the chance of detecting a tumor to its
size [2,3,4,5,7,12, 15]. Kimmel and Flehinger [12] studied the relationship between
the occurrence of metastases and the size of primary tumor. This information is
essential to a better understanding of the natural history of metastatic cancers. In
like manner, Yakovlev and Tsodikov [25] proposed to use data on tumor size at
detection for making inferences on the mechanisms underlying tumor latency in the
course of spontaneous and induced carcinogenesis. With this aim in view they
introduced a threshold counterpart of the model of carcinogenesis developed by
Kiebanov er al. [13]. As evidenced by some preliminary results of data analysis, the
idea holds much promise for the analysis of tumor latency and risk assessment. In
the present paper, we give a theoretical foundation of this approach. The results of
real data analysis will be detailed in another paper.

2. The model

2.1. Spontaneous carcinogenesis. The model discussed below stems from the
contemporary view on carcinogenesis as a multistage process, clonal in origin, that is
initiated by a widespread event occurring in a large percentage of cells [8,11].
Although much of this concept owes its origin to studies of tumor induction by
irradiation or chemical carcinogens, it is believed to be true for the processes
underlying spontaneous carcinogenesis. More specifically, the model is based on the
following assumptions.
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(i) The primary event in the process of carcinogenesis is the formation of an
intracellular lesion which is potentially carcinogenic. One may see these precan-
cerous lesions, or altered cells, as possessing in the long run the capacity for
producing a detectable tumor. Such primary events occur at random times and their
sequence in time is thought of as a Poisson process with intensity 8q(2).

(ii) All primary lesions may be considered as being subject to repair processes
[1,16], but some of them remain unrecognized by the repair system and conse-
quently unrepaired. The presence of unrepaired lesions can be also explained by a
limited capacity of the repair system. Some of the lesions may happen to be
misrepaired owing to the functioning of error-prone repair mechanisms [21]. The
existing experimental evidence on the temporal characteristics of enzymatic repair of
lesions [10, 28, 31] allows one to assume that this process is effectively instantaneous
compared to the subsequent stages of carcinogenesis, i.e. each lesion is repaired or
misrepaired immediately after its origination. This suggests that the repair effect can
be modeled as a thinning operation on the Poisson process of lesion arrivals: with
probability g, each lesion is eliminated independently of the others and of the whole
point process of lesion formation. As a result, the thinned Poisson process of
intensity 8 = (1 — q)8, represents the precancerous lesions entering into the stage of
tumor promotion. It is clear that with this way of incorporating repair processes the
basic model structure remains unaffected. Some queueing formulations of cell repair
models are given in [13,17,24].

(iii) An unrepaired (or misrepaired) precancerous lesion remains dormant as long
as it proceeds through the promotional stage of tumor development. All lesions are
subject to promotion independently of each other.

(iv) Once the first malignant cell arises as a result of tumor promotion, its
subsequent growth is irreversible and the progression stage begins. It is this
clonogenic cell that gives rise to an overt tumor after a lapse of time.

(v) A tumor becomes detectable when its size attains some threshold value, N,
which is treated as a random variable (r.v.). The most widely accepted approach to
the modeling of proliferation of tumor cells is that based on branching processes. It
is essential to select a sufficiently simple type of branching process, lest the model be
too cumbersome. In the attempt to develop a parsimonious model of tumor latency
we use a linear pure birth process with the absorbing upper barrier N to model the
dynamics of tumor growth. Under this model the progression time cumulative
distribution function (c.d.f.), given the threshold level N, is

(1), Fe|Ny=(1-e™)",

where A is the birth rate. Formula (1) implies that tumor growth starts from a single
malignant cell at time ¢ =0.

Let L(¢) be the c.d.f. of the time it takes for the initiation and promotion
processes to result in the first malignant cell. When studying spontaneous carcinoge-
nesis, this time is measured from the date of birth of an individual. Derived from
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the above assumptions [27] is the following expression for the corresponding
survivor function L(t) =1 — L(¢):

(2) L(r)=exp { - Ll 8(t —x)R(x) dx},

where R(¢) is the c.d.f. of the promotion stage duration. To retain model tractability
we confine our consideration of spontaneous carcinogenesis to a homogeneous
Poisson process of lesion arrivals, thereby reducing (2) to

(3) L(1) =exp{—9£R(x) dx}.

It is practical to represent the critical number of tumor cells as N = ¢V, where V is
the volume of a tumor and c is the concentration of tumor cells per unit volume. The
constant ¢ is non-random and its values are typically large. In applications, the value
of ¢ is frequently taken to be approximately equal to 10° cells per cm® [15]. Thus the
conditional progression time c.d.f., given the threshold volume V = v, is

4) | F(t|v)=(1-e

Let f(t | v) stand for the probability density function (p.d.f.) of F(¢ | v). Assuming
that the stages of promotion and progression are mutually independent, we use the .
convolution

(5) g(t|v) =£R(r - u)exp{—efo'_“ R(x)dx}f(u | v) du

to represent the conditional p.d.f., g(¢ | v), of the time of tumor latency measured
from the date of birth. ,

Introducing a prior distribution, P(v), of the r.v. V., we repesent the p.d.f. of the
time (age) of tumor detection as

x

(6) 8= sl | v)p(v) dv,

where p(v) is the density of P(v). Throughout the paper, the distribution P(v) is
assumed to have finite first moment. We are primarily interested in the conditional
p-d.f. of tumor volume at detection (given that a tumor is detected at time ¢),
hereafter denoted by w(v | r). By virtue of Bayes’ formula we have

wiv | 1) = xg(tlv)p(v) _8t|vp@)

fo g|wpydu 5

(7)

where g(r | v) and g(¢) are given by (5) and (6), respectively.
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2.2. Induced carcinogenesis. In the event of induced carcinogenesis the time of
tumor latency is measured from the time of exposure to a carcinogen. Let D be the
carcinogen dose and T the exposure duration. Considering a constant dose rate
exposure, we set

6,D/T forO0<:=T,

o) = {O for t>T,

in formula (2). This gives
- 6,D (T
L(t; Ty=exp { - -IT[ R(x) dx},
0

where 6, is the mean number of precancerous lesions per unit dose. Letting 7 — 0 in
the above formula, we obtain the model of a brief (single dose) exposure in the form

(8) L(r)=e%F0,

where 6=6,D is the mean number of lesions induced by a given dose of
carcinogen. Unlike the distribution given by (2), distribution (8) is improper.
However the basic model structure will remain as in the case of spontaneous
carcinogenesis with distribution (8) used in place of (3).

3. The limiting form of w(v | ¢)

For the model to be useful in the analysis of real data additional parametric
assumptions must be called on to specify the distributions R(r) and p(v). However,
the conditional p.d.f. w(v | r) assumes a much simpler form when r tends to infinity.
This limiting form does not involve the promotion time distribution, R(¢), and it also
has some distinct advantages as far as estimation problems are concerned. A similar
problem arises in Bayesian statistical inference with reference to outliers [18].

3.1. Spontaneous carcinogenesis. It follows from (4) and (5) that in the case of
spontaneous carcinogenesis

) g(t|v)= /\Bcvfe'“"’)(l —e MmN TIR(s) exp {—Gf R(x) dx} ds = ABcvys(1).
0 | 0

Theorem 1. The following assertions hold for the limiting behavior of the function
Y(t) as t— <o,
(@) If A< 0 then

(10) Y(t)~Te™™,

where

I= fa exp {/\s - GLSR(x) dx}R(s) ds.

0
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(b) If A= 6 and [Z[1 - R(s)] ds < then

(11) v~ rexp {-1[ R0 s

(c) If A> O then

(12) v ~Texp-6] 'R@dx},

with

1 1 .
1=1 [y -y dy =2 Blen 1= 0M),
AlJy A
where B(x, y) is the beta function.

The proof is based on the following lemma.

Lemma. Let K (t,5,u) be a bounded measurable function defined for t1=s =0,
u =0 and such that K(1, s, u)—>aast, s, u—=. Also, let h be a positive continuous
function such that hm h(t —u)/h(t) =1 for every u Z0, and [ h(u)du = . Denote

H(t)= [ h(u) du. Then
-I—{l(—t)-ﬂK(t,t—u,u)h(u)du—»a, t— ®,

Proof. We may assixme indeed that a =0. Suppose that |K| =M. Fix €>0 and
choose A > 0 such that [K(z, s, u)| <€ for all s, u = A and t =s. For t >2A we have

t A r—A t
fK(t,t—u,u)h(u)du=f.+f +j ’
0 (V] A t-A

hence

f K(t, t —u, u)h(u)du

|H1() H()f h(u)du H()f h(u)du + e.

By the I'Hospital rule

h(u) du o )
lmi____zmjm MIAL_qutA)

(o0 f'h(u)du f—e0 h(t) t—sc0 h(t)

=0.
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From here and from H(t)— =, t — =, we conclude now that, for all sufficiently large
l,

f K(t, t —u, u)h{u) du
0

=2e,

l 1
H(r)
and this complétes the proof.

Proof of Theorem 1. (a) We represent (t) as

()= f £(s) ds

where
f;(S) = eAs(l - e—/\(l—s))CUR(S) €xp {_OJ; R(X) d.x}x[(),,](S),

and Y(o,(s) is the characteristic function of {0, t]. For every s >0,

1 5
ﬁ(s)Tf(s):=R(s)exp{—s[B;f R(x)dx—-/\]}, t— x,
0
~ Applying the lemma with K(s,u)=R(u) and h=1, we see that
s[5 R(x)dx—1 as s > . Hence in the case A <6 one has [§ f(s) ds <, and by

the Lebesgue theorem on bounded convergence we obtain (10).
(b) Let A =0. We change variables in (9) by writing u = — s to obtain

(13) ¢(t) = exp{—/\JﬂR(x)dx}f(l - e TMYVR(t - u)exp{—/\f [1- R(x)]dx}du.
Applying the lemma with
K(t, s, u)=(1-e"™)™R(s) exp {—)\jr [1-R(x)] dx}

and h =1, we conclude that (11) is true. Note that K(r, s, u)— 1 for ¢, 5, u — .
(c) Similar to (13) we have for A> 8

Y(t) =exp {—GJ: R(x) dx”: g.(u) du,

where
gw)=e A1 —e Y R(t — u) exp {—Of_ [1-R(x)] dx}x[oy,](u).

Obviously, for every u =0

g(u)Tgu)=e ¥ 1 -e™™)™, o=
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Hence, by the bounded convergence theorem,

o 1 i
fg,(u)du—»f g(u)du=-j (1= v) " dy, [— <.
0 0 AJo

Remark 1. Let sy = inf{s: R(s) > 0}. Then setting y = ¢(s):= [{R(x) dx. s Z5,, we
have

x<

1=J exp {/\3 - GJ R(x)dx}R(s)ds =f eM % (s) ds =j ehe T gy
0 0 ‘

s #l(sy)

Remark 2. 1f M= [§[1 — R(x)]dx <= then for A =6, y(t) ~e *“"*1, and for
A> 6, y(t) ~e0uMy

Taking up (7) and (9) with (¢) given by (10) or (11), we can write

(14) limw(v| 1) =x—UE—(P—)—, A=0.
— up(u) du

0

Now the fact that cv is large can be taken into account. Using the Euler-Gauss
formula

(15) lim (cv) "®*B(cv, 1 - 8/A)=T(1 - 6/1), 6H<A,

and the Lebesgue theorem on bounded convergence, it follows from (7), (9), (12)
that

8/A
1) limw( | ) ~——P®
- J u®p(u) du

0

for A> 6. Combining (14) and (16) we obtain the limiting conditional p.d.f. of tumor
size at detection:

# 6
limw(o [ =P, =min{l,—}.
(17) [~ /\

u*p(u) du

0

A special case (u =1) of this distribution is associated with what is known as a
length-biased sampling from stationary point processes [9]. A sampling bias inherent
in screening procedures under a stable disease model [30] provides yet another
example.
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3.2. Induced carcinogenesis. The case of induced carcinogenesis can be considered
along similar lines. In this case

(18) gtlv)= Achf e M1 — e NI (5)e TORY) ds = ABcu(1),
o

where r(t) is the density of R(r).

Theorem 2. Let
o= sup{a:[ e‘“r(s)ds<x}, Osco==
0

(a) If A<oor A=cand [§eTr(s)ds <=, then
(19) () ~Le ™,  r1—=x,

where I, = [5 e*r(s) e RS gs.
(b) Let A=0 and [5e”r(s)ds ==. Suppose that the function r(s) is positive and
continuous for s >0, and that the funcrion h(s):=e”r(s) has the property

hit —
(20) ,ll.ni l(h ([)u)_) 1 for every u 0.
Then -
(21) o(t) ~ L(t)e ™%, [—x,

where L(t) = [, e”°r(s) ds.

(c) Let A>o. Suppose that r(s) is positive and continuous for s >0 and that h
satisfies (20). Also, suppose that the function h is either non-decreasing or that it is
non-increasing and subject to the following conditions:

(1) -,%§ C for some constant C,
(11) f h(s)ds <=,
0
. Then
(22) bo(t) ~ (1)

where I, = (e "°/A)B(cv, 1 — o/A).

Proof. (a) Relation (19) follows easily from the Lebesgue theorem on bounded

convergence.
(b) We have

4

lpo(t) —_ e—-(AH-O)J C”"I’(S)(l _ e—A(r—s))w—lee(l—R(s)) dS
0

= e‘“’*"’f K(t—s,s)h(s)ds,
0
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where K(u, s)=(1—e )™ 1e?! "R and h(s) is defined above. Observe that
0=K(u,s)<e®and K(u, s)— 1 for u, s— =. Applying the lemma, we get (21).
(c) By the change of variable u = —s in (18) we represent () as

' h(t -
. lj/o([) = r(t)e—OJ’ e—(A—rr)u(l _ e—/\u)r:v-l _(hTt_)i)eB[l—R(l—u)] du
0

= r(t)e"GJ: g, (1) du.

For every u =0, we have by (20)
(23) gl(u)_)g(u);z e‘(/\—(r)u(l _ e—/\u)cv—l, t—

and it is clear that [3 g(u)du <. If h is non-decreasing, then g(u)=e®(u), and
the Lebesgue theorem yields

t 1 1
[ e [ gwyau=1 [y a-p =yt
0 0 A Jo

Now suppose that 4 is non-increasing. Observe that

h(t—u)

24 : < 8—(A—-o)u O<u<t
(24) gu)=se _——h(t) y
Hence, for 0= u =1/2 we have from condition (c-i)

h(t)2
g:(ll) = ee‘(/\—o‘)u _/A(l—(/ts—).é Ceee—(z\—a)u.

Then by the Lebesgue theorem and in view of (23),

/2 x
(25) J; g (u)du— Jo g(u)du, t— .

Next, invoking (c-ii) we find that

G—(A=a)tl2 JHZ B—(A—o N2

1
— | As dsé——-——Uhs ds+lth1].
oL s | () ds + k(1)
Note that condition (c-i) and monotonicity of 4 imply that h(r) = Ar~® for some
constants A, § >0. Combining this with the previous estimate, we conclude that
%> 8(u) du—0, and therefore [{g,(u)du— 5 ast— .

(26) f g(u)du =
12

Remark 3. If the distribution function R is strictly increasing, then setting
y = R(s) in [, defined by (19) we have

1 .
I =f AR D=8 gy,
0
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Remark 4. It can be verified that Theorem 2 applies to many parametric forms of
r(x). Consider the family of distributions with density

r(x) = Cx* e A ya (x), a, B,v>0,

where C=C(a, B8, v), which includes, in particular, the Weibull and gamma
distributions. To apply Theorem 2 we study the following cases for 1y.

(a) Let y>1. Then o = =, and by (19), for every A >0, ¥(t) ~e™MI,.

(b) Let y =1. Then o = 83, and h(s) = Cs* ! satisfies (20).

For 0<A<pB we have (19). For A=p3 we obtain (21), namely, (1)~
(Cla)e™**9r* For A> B, h is monotonically non-decreasing for @ =1, and is
monotonically decreasing for 0< @ <1. Also, in the case 0<a <1 conditions (c-i)
and (c-ii) are fulfilled. Thus, ¢(z) ~ r(t)L;.

(c) 0<y<1l.Theno=0,and h=r.

To check condition (20), observe that

h(t—u)_(t—u
h(t) T\ g

and that for every such u

)a- exp{B[t” — (¢ —'u)V]}, O=us=y,

0= —(@-u)=sywu(t-u)"'-0, t->x

If 0= u =it then

h(t— —u\*! 1
( u)é (t u) ePr =™ = max {1,2' "} exp {Byu(t/2)" "}
h(t) t
Therefore for sufficiently large ¢ we have by (24)
gu)SAe ™7  0=ust/2,

where A is independent of u and ¢, and this justifies (25). ‘
To show that [7; g,(u) du— 0 as t — =, we use the first inequality in (26) and note
that [§ h(s)ds = [5r(s)ds = 1. Recalling that 0 <y <1, we have

f gu)du =Cr' " *exp {6 + Bt” — At/2}— 0, ! —
12

Thus, in the case 0< y <1, for every A >0 (¢) ~ r(t)l5, where

It follows from Remark 4 that Theorem 2 imposes fairly mild restrictions on the
function r(¢). This theorem enables us to formulate the basic result in terms of the
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conditional p.d.f. of tumor size at detection as follows:

v'p(v) . { 0}
— . 7 = min l,x )

J:u"p(u) du

which bears close similarity to the one obtained within the framework of the
spontaneous carcinogenesis model, but the parameter n in (27) has a somewhat
different biological meaning when compared to the parameter u in (17).

27) lim w (v |£) =

3.3. The posterior mean tumor size. Let M denote the expected value of the
limiting p.d.f. w(v | ). Recalling formula (17), we have

=E(V,,‘+1)_J:v“+lp(v) dv
E(V*) "
J:u p(u) du

providing the second moment of the prior tumor size distribution exists. Note that
we just refer to the expected value of the limiting p.d.f. w(v|®), evading
consideration of the first moment convergence which invites special investigation.
Since the function ¢(v) = v* is monotonically increasing for v 20, we see that

]

M%E(V)=rvp(v) dv.
0

For one example, if a prior gamma distribution with shape parameter a is specified,
then the posterior p.d.f. w(v | =) will be a gamma density as well but with shape
parameter a + u. In that event the posterior expectation is

a+u
B )

where B is the scale parameter of the prior gamma distribution.

M=

4. Estimation problems

Using bivariate data on tumor size and age at detection for patients diagnosed
with a specific cancer, it seems feasible to estimate the model parameters responsible
for different unobservable stages of carcinogenesis. First we assume that such data
arise from the joint p.d.f. g(v, £) =g(¢| v)p(v). This is a strong assumption but it
may be warranted if the effect of data censoring due to competing risks (see below)
is negligible. In such an event, the log-likelihood is represented as

(28) €= logg(t | v)+ X logp(v)= 6 + 6,
i i

It is clear that €, and 4 can be maximized independently of each other, resulting in
the empirical distribution function, 2(v), for estimation of the c.d.f. P(v).
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It is intriguing that the parameter u (or n) can be estimated independently of the
other parameters from a subsample of old individuals. Let n be this subsample size.
Based on (17), the log-likelihood function is

fu)=p 2 logv,+ X, logp(v) = nlog E(V*).
i=1 i=1

Therefore the maximum likelihood estimator, &, of the parameter u can be
obtained as a solution of the following equation:
E(V¥FlogV) 1&
( eV) > log v;.

@ TRV n

The left-hand side of this equation is strictly monotonic in u, and thus the equation
has a unique solution. Actually, by applying the Cauchy-Schwarz inequality we see
that 5 (E(V* log V)/E(V*))Z 0, where the inequality is strict except for the trivial
case of a degenerate r.v. V. With large sample sizes the expected values in (29) can
be replaced with their empirical counterparts obtained from the whole sample.

We applied this approach to clinical data on the primary tumor size for 2129
premenopausal patients diagnosed with stage I-III unilateral breast carcinoma. The
data are described at length in [20]. There were 536 patients older than 50 in the
data set. The maximum likelihood estimate of the parameter u obtained from this
group of patients was found to be 4 = 0.1054. Such a small value of 4 is biologically
plausible since the intensity of tumor cell proliferation is known to be much higher
than the rate of precancerous lesion formation. :

One heuristic way to explore the adequacy of the limiting p.d.f. w(v | ) is to test
the hypothesis of conditional independence of the size, V, and the age, A, at
detection given A > r*, where the value of r* is to be estimated from a given sample.
Note that |

g, t|A>1%)
glt|A>r*)

wv|A=1A>*) > %,

where g(v, 1) is the joint p.d.f. of V and A. If V and A are conditionally independent
given A > t*, then

g t|A> 1) =g |A>r*)g(t|A>1%),  t>1%,
and
wv|A=A> ) =gu|A>1t*), >r*
We use w(v | ©) to approximate w(v | A =1, A >t*) which is equal to g(v | A > r*)
if V and A are conditionally independent.

The hypothesis of conditional independence of the size, V, and the age, A, at
detection given A4 >¢* can be tested by applying Spearman’s statistical test to
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TABLE 1
Testing the conditional independence of V
and A

Values of t*  P-values of Spearman’s test

(years) for each subsample

39 <0.001
41 <0.001
43 <0.001
45 <0.001
47 <0.001
49 <0.001
50 0.1

various subsamples created by sampling from pooled adjacent age strata. With the
data under study, this procedure resulted in the value of t* =50 years (Table 1).
Clearly, this exploratory data analysis can be regarded as a clue rather than as the
conclusive inference. When applied to the whole sample, the Spearman test rejects
the independence hypothesis at a significance level much lower than 0.001. It should
be noted that the condition u =0 is sufficient for independence of V and A. An
extended analysis of this data set is addressed in [22].

More generally, account can be taken of a competing risk that precludes tumor
detection from occurring. To accommodate this censoring effect, we assume that the
competing risk of death from all other causes is independent of the one of interest.
The competing risk is characterized by its latent time Y. Let S(y) be the survivor
function for Y. It follows that

p(v) f g | v)S(u) du

2

p(v)=plv| A< V)= |
J: £(u)S(u) d

and

p(g(t[v)S()

g, t)=g(v,t|A<Y)=
J:g(“ | v)S(u) du

Since S(¢) is free from unknown parameters, the log-likelihood assumes the form

60 =3 logs(u|u)-Slog | glulwS)du+ 3 logpitu)

rendering, as well as (28), estimation of the model parameters independent of the
prior size distribution. It is clear that additional information must be called on to
estimate the function S(¢) involved in the above formulas. The log-likelihood (30)
reduces to (28) if S(¢f)=1 almost everywhere. As our preliminary numerical
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experiments suggest, more often than not the impact of censoring on the
log-likelihood (30) can be considered negligibly small. It is also noteworthy that the
presence of an independent competing risk leaves the form of w(v | 1) unaltered.

5. The model stability

In studying the stability of the posterior p.d.f. of tumor volume at detection under
perturbation in the prior p.d.f. p we proceed from the formula

(31) w,(v) i=w(v | 1) =— g1 v)p(v) ,

A g(t|uw)p(u)du

and a natural (see (17), (27)) assumption that

(32)  Na(p)= f W () du < x,

where a=pu or n for spontaneous and induced carcinogeneses, respectively.
Accordingly, we use the metrnic

(33) p,,(f,f):=J; u® | Fu) = f) du,  a>0,

to measure the distance between the ‘true’ p.d.f. f and its perturbed counterpart f.
For spontaneous carcinogenesis in the case A < , it can be easily envisioned from
(9) that g(v | 1) = C(r)v, where -

(34) C(t)= Abcle™,

see (10). For A = 6, the same is true with

(35) C(t) = AOct exp{—ALlR(x)dx}.

In the remaining case A > 6 we have due to monotone convergence in formula (15)
the estimate g(r | v) = C(r)v®*, where

6 1
(36) c@)= Bce’*I’<1 -X> exp {—GJ R(x) dx}.
0
In the case of induced carcinogenesis, we infer from (18) that if A <o then
g(t | v) = C(t)v with
(37 C(t) = Abclie™,
where I is defined in (19), while for A = ¢ the same estimate holds with

(38) | C(t) = ABce™™L(t),
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see (21). Finally, in the case A > o we obtain, assuming that the density r is bounded
(bv M(r), say) and using monotone convergence in (15), the estimate g(r|v)=
C(ryw“*, where

(59) Clr) = ec"“M(r)r<1 - %)

Hence we can state that in any case

(40) elt | v) = Cloe
Setting
(41) A= [ stlvpwrdn, A= gl vpe)a,
4] 0

and using (31) and (40), we have

g(t|v)

W, (v) = w,(v)] gg—(['%a?(ﬂ I/i, - Al +Tlﬁ(v) - p(v)|
Cp.(p, C(r)v® ‘
=S PP) o) + 22 o) - pio) |

Integrating in v we get finally

) 2C
ool w)i= [ 190 = wldv 5T

PalP, P)-

t

By setting C(z) =1 we obtain a similar estimate for the distance between the limiting
p.d.f.’s w and w.
We summarize these results in the following.

Theorem 3. Let a be equal to u or m defined in the cases of spontaneous and
induced carcinogeneses by (17) and (27), respectively. Let p, be defined as in (33).
(a) For every t >0, |

2C(1)
A,

where C(1) is specified by (34)-(39) and A, is defined by (41).
(b) For the limiting p.d.f."s we have

pa(P, P),

pﬂ(wn Wr) =

pa(P, P),

(W, w)=
7o N.(p)
where N,(p) is given by (32).

The metrics p, and p, have different topological structures; p, is the total
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variation distance while p, metrizes the p,-convergence together with the conver-
gence of the a-moments. To make the estimates in Theorem 3 uniform, i.e. to have
py in both sides of the inequality, one can use the Holder inequality to obtain for
any € >0

pa(p. B)Z (PP, B [Nawelp) + N )],

assuming the existence of finite (@ + ¢)-moments for p and p. This would result in
the following right order estimate:

po(w, W) = constant X (¢, €)po(p, p) .

6. Some other stability results

The estimates presented in the previous section are adjusted to the model
properties. More generally, the problem can be considered in the context of Bayes’
formula (31) alone. To this end, we introduce the following A-structured [19, 32]
distance:

@) I8, 8) = inf € >0: sup i2(x) -~ glo) <e]
. ixi=lle

between two functions § and g on R.
If  and f are two probability densities then /(log f, log f) < e means that

<e.

sup

| X

og =2

= 1/e gf(x)

Remark 5. By virtue of Scheffé’s theorem [6] the convergence
[(log f, log f,)—0, n—x,

implies the convergence in total variation distance, i.e.

o f) =5 j F(x) — )] dx—0.

We proceed from the following assumptions:
(1) P:=esssupp(x) <=,
(i1) For some a >0,

m, = j x| p(x) dx < =.
R
(iii)

M?:=esssupg(t|v) <
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and also there is 8 >0 for which
M® = ess sup vl g(t | v) < =.

Fixing & = (0, 1] such that §°M? < A,, where A, is defined in (41), we denote

(8)
M;
= 8*MPm,

C(8):=~

For fixed t, an estimate of the stability of w(v | 1) to perturbations in the prior p.d.f.
p(v) in terms of metric (42) is given by the following theorem.

Theorem 4. Under conditions (i), (ii), and (iii), suppose that | :=[(log p, log p) <
8. Then

I(log w,, log w,) = C/l?,
where
2(Pe® + 1)e°

C,=1+——""—CJ(5).
= C®

The estimate given by Theorem 4 admits a uniform (with respect to ) version
under some additional restrictions. To be specific, we assume that: -

(iv) o:=inf, g (A/MP)>0;

(v) there exist 8, 0< & <min {(0/m,)"*, 1} such that

C(8)=sup C ()<=,
teR

and introduce the following metric:

w,(v)

wi(v)

<

Theorem 5. Under conditions (i)-(v), suppose |:=[(log p,logp) <&. Then

(43) L(log w, log w) := inf {e >0:ess sup

tl, itis1/e

log

L(logw, logw)=CL*,
where
2 8 + 5
+ (Pe® + 1)e
1-8
The proof of this theorem is given in the appendix. The proof of Theorem 4 is
similar.

c=1 C(5).

Remark 6. In Theorems 3, 4, and 5, we deal with estimates for the model stability
in terms of metrics that generate strong topologies in the space of probability laws.
If need be, weaker distances can be invoked through the use of ‘smoothed’ versions
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of metrics po and !/ yielding bounds similar to those in Theorems 3-5 (see [19] for
details).
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Appendix. Proof of Theorem 5

Choose € € (/, §). For almost all v and ¢, we have

long;:—((s)l =|log w,(v) = log w,(v)| = [log p (v) — log p(v)|
+ long(t | x)p (x) dx — log Lg(z | x)p(x)dx{=D, +E.
Note that
A mmpe e <

Recall next the inequality

(A2) min(a, b)

log%‘ =|a— bl =max (q, b) log%l ,

which is valid for all a, b > 0. Therefore, the upper bound for E, is given by

[ 61066 - pey as
min (A, 4,)

(A3) E=

For the numerator, N,, in (A3) we have

MgM@U

x

f[ e -pwids
ISe”!  xi>e”!
In view of (A1) and (A2) the first integral is estimated by

e?.

2Pe®
[ e -pears e pan=—
ise! xjSe! 1- B
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As for the second integral, we have

[ wrepe-pordcs2e
1x|>e"!

Hence,

2M§B) B
N,_5_—1—'—[-;"'(Pe’S +1).

Consider now the expression for A,:

A= [ selop@ax=([ [ Jetelopeoa

Due to (A1) we have for the first integral the following lower bound:
[ stlmpwarze|  stlnp@x
Ixise! xiSe!
and consequently for the denominator in (A3) we get
min (4,, A,)ze"f g(t | x)p(x) dx.
x|se!
Furthermore, we have
f glt| x)p(x)dx = MfO)J p(x)dx = e*MOm,.
Ix|>e~! x|>e™!
Combining the above estimates and using assumptions (iv) and (v), we set
2(Pe’® + 1)e’
.= 2Pt Ve
1-8
to obtain

MP M®
A, —eMOm, A~ 8MOm,

E,=Bée*? = BC(8)€”.

Together with (A1) this yields

w,(v)

wi(v)

<ess sup D, +ess sup E,=e+BC(8)e”.

wi<e! n<g~!

ess sup log

Wi, ti<e™?

Now from the definition (43) we derive that
L(log w, log w) = € + BC(8)e? = €°(1 + BC(3)).

Letting € — [(log j, log p), we see finally that L(log w, logw) = ClI®, as required.
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