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Description of methods of longitudinal data analysis with the help
of an investigation of irregularities of the cardiac rhythm in
animal experiments

E. Schuster, C. Schlesinger and H. Loster

Summary

Estimation methods such as maximum-likelihood (ML), restricted maximum-likelihood (REML)
and generalized estimating equations (GEE) are introduced for longitudinal data analysis at the
linear model with correlated errors. Their application will be demonstrated at an example of
investigations of disturbances of cardiac rhythm in animal experiments.

1. Methods of Parameter Estimation for Longitudinal Data Models

The estimation methods that were used, maximum-likelihood (ML), restricted maximum likelihood
(REML) and generalized estimating equations (GEE), are referred to Diggle et al. (1994) and
Arminger (1995). They base on the general linear model with correlated errors for longitudinal
data. Therefore, the following is introduced:

Y; = random variable of j-th response of i-th subject: j=1...n; i=1...m

y; = realized value of Yj;

* t = time at which Y;; was measured (the same for all i)

x; = line vector of covariables (of length p)

Y= Xy By + Xy By +t Xy By + €5

Y;=x;B+€;

Y, =X, B +¢ with Y, = (Y;;,..., Y;,)T and n*p matrix X,
Y=XB+e€ with Y=(Y,, ..., Y_")T and nm*p matrix X
assumptions:

. E(ey) =0 for all i and all j

. Var(e,)) =V, foralli

. € and ¢; are independent for i#]

It follows:

E(Y)=Xp

Var(Y) = V=18 V, block diagonal.

1.1. Maximum Likelihood Estimation under Gaussian Assumptions

Assuming, the data has a multivariate normal distribution, the log-likelihood has to be maximized

L(B,0%V,) = -0.5[nminc® + min|V,|+ o”X(y-XB)" IB®V)™ -XP) ] .

To given V, the maximization over  results in

Bv) = XT V)™ XT ®V)! y .

If this result is used the maximization of reduced log-likelihood over V; will remain
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L(V9=-0.5m {nIn(RSS(Ve) +In1Vdl } with  RSS(V)) = 5-XBV))" (1®V)™ (v-XB(V,)

1.2. Restricted Maximum Likelihood Estimation

The basic idea of REML is to transform data, so that transformed data does not depend on .
REML is the maximization of likelihood for the transformed data.
To given V, the maximization over [ has the results as above

BV = X7 (QV)'X)™ X1 I®V)™" y .

If this result is used the maximization of restricted reduced log-likelihood over V;, will remain
L'(Vy) =-0.5m {n In( RSS(Vy)) + In [Vl } - 0.5 nX"(I®V,)'XI

=L(Vy)-05 X"M®V,)'X!I with RSS(V) = 0-XB(V)T t®Vy™ »-XB(Vy) .
Restricted log-likelihood L'(V,) differs from log-likelihood L(V,) only by the additional term.

1.3. Pseudo-ML Estimation

It is assumed, that in the ML estimation the true conditional density of Y, given X, namely f*(Y;IX))
is known up to an unknown parameter vector f of dimension p.
Now partial misspecification of the density is assumed. The true but unkown density of Y; given X
namely f*(Y,X;) has a conditional expected value E.(Y/X). Furthermore, the researcher has
specified - up to an unknown parameter vector B - a density f(Y,/X, , f) where B is a
parameterization of E{Y|IX|, B) = X . If a vector B, exists so that

En(YiX)) = E{YX,, Bo),
then f3, is also a parameterization of E.(Y,IX)). It is only the mean structur that is specified in this
model in the parameter vector 3, One can get pseudo-ML (PML) estimation of [, by maximization
of the log-likelihood with the assumed density f(Y,X, , B). Since the assumed density may be
misspecified-except of the mean structure-this estimation method is called pseudo-ML.
Gouriroux et al. (1984) show that PML estimation of 3, based on the assumed density yields a
consistent estimator " of B, if and only if the assumed density is a member of the univariate or
multivariate linear exponential family. An important consequence of this result is that whenever the
conditional mean structure is correctly specified one can use linear or nonlinear least squares to get
consistent estimates of P, regardless of Var(e;) or any other property of the true distribution.
Assuming, V* is the estimation of the covariance matrix Var(Y) of the chosen model, whereas V"
isa con51stent estimated covariance matrix for any covariance structure. As an example:

—I®(YI XlﬁA)(YI Xlﬁ)r

Furthermore, it is provided that the mean value structure is correctly specified, that means the
chosen model corresponds with the true model. The mean value parameter is then estimated
consistently. Furthermore, the covariance matrix of the mean value parameter [ can also be kept
asymtotically consistent by the so-called robust or sandwich estimator even at error specific
covariance structure

VarB) = X' V¥ X I XT v v v+ X)) (XT v Xy
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The derivated standard deviations should also be used at ML estimation, because they will also
allow correct decisions if the model of covariance structure or distribution assumption is
questionable. If, however, all preconditions for the chosen model can be fulfilled, then V* is a
consistent estimator and can be used instead of V* in the formula mentioned above.

Thus, the formula above simplifies to

Var(B) = (X" v+ X )
of the so-called naive estimation.

1.4. Parametric Models for Covariance Structure

All n (n+1) parameter of V,in ML or REML models mentioned above have to be estimated without
a parametric model. If the number of the moments of time n is too high, it will be better for V, to
use a parametric model of the covariance structure,

;j The following model assumptions can be made:

- . U, ~ N(0, v3) _ - random intercept

z . Wi(t) stationary process with E(W (t))=0 and

"3_ Cov(Wi(t), Wi(s)) = 02 p(lt-si) = g2 exp(-oit-si2 ) - serial correlation

. Z; ~N(O, t? - time independent measure error.
z With the help of this,V, can be estimated with only a few parameters.

% 1.5. Generalized Estimating Equations for Mean Structures

If the assumed density of Y, given X, is the multivariate normal density with fixed covariance
matrix V,, the kernel of the pseudo-log-likelihood function may be written as
B =(Y-XPT AV (Y-XP).
Now the pseudo-log-likelihood-function is differentiated in respect to parameters and the first
derivative is set to zero
3(8) = X" (I®V,)" (Y - X ) = 0.

ese score equations are called generalized estimating equations for the mean structure by Liang
and Zeger (1986). Until now it is a special case of PML estimation for mean structures. But in the
GEE approach by Liang and Zeger (1986) the working covariance matrix V, is parameterized as a
function of B and a vector « of additional parameters with true value o, which are also estimated
from the data. Therefore, the generalized estimating equations take the form

' s(B) = X" (IQV,(B, a))* (Y-X B)=0.

It is to solve iteratively. :
In the first step, V, is fixed to the unit matrix L Then, f is estimated by solving s(B) = 0 yielding B
(the OLS approach). From B, residuals may be computed, which allow the estimation of e, by a

nsistent estimator . It follow V,® = V,(B, o9} and the next iteration until convergence for
Variance stabilization. The parameters o are not of primary interest but are considered as nuisance
Parameters. The procedure is called GEE] because- only the mean value structure f§ is estimated
pwhich means the moments of first order. The GEE supply was illustrated for the linear model only.
fSut it also holds true for other distributions from the linear exponential family. Chapter 2.2. deals
EWith one of those examples. The information sandwich is used to estimate Var(P).
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2. Illustration of Methods with the Help of an Investigation of Disturbances of Cardiac
Rhythm in Animal Experiments

Damage to the heart caused by ischemia and reperfusion can be investigated using isolated hearts
from test animals (models e.g. by NEELY and LANGENDORFF). Besides hemodynamic and
metabolic changes, alterations of electrophysiological parameters (ECG) can be monitored.

In our investigations ischemic injury of the myocard was induced by a global ischaemia lasting 20
minutes without rest coronary flow (“no flow” ischemia), followed by a 60 minute reperfusion
period. The extent of the ischemia injury does not only depend on the conditions of ischaemia, but
also on the composition of the perfusion solution. Therefore, the hearts were firstly perfused with
a standard perfusion solution for stabilization, followed by the solution that was to be tested, which
contained either 0.4 or 1.2 mmol/l of sodium palmitate and with or without 5 mmol/l L-carnitine.
L-carnitine is an essential component of the fatty acid transport system, which causes permeation
of long-chain fatty acids through the inner membrane of mitochondria and causes a protective
effect on the mitochondrial function and therefore on the whole myocard in the reperfusion phase.
This has lead to controversies in literature.

Not only hemodynamic quantities such as left ventricular pressure, pressure rate product,
contractility and relaxation velocities, and coronary flow were monitored and evaluated as
parameters of the ischaemia injury in isolated hearts but also electrophysiological quantities (heart
rate and ECG). The behaviour of the heart rate was tested before and after ischemia and in
particular in the first 10 reperfusion minutes. The rhythm disturbances in the isolated hearts were
monitored and evaluated in the early (1st - 10th minute) and late (10th - 60th minute) reperfusion
phase with the help of a self- developed arrhythmia score.

In the following it will be investigated whether L-carnitine develops an influence on heart rate,
incidence and degree of seriousness of rhythm disturbances in the reperfusion period of isolated
hearts containing glucose and various fatty acid concentrations in the perfusion solution.

It turned out to be useful to evaluate the early and late reperfusion phase separately. Starting point
was a model which contains all three factors sodium palmitate, L-carnitine, and time as well as
corresponding interactions in each case. '

The following calculations were done with “object-oriented software for the analysis of
longitudinal data” (OSWALD) by David M. Smith and Peter J. Diggles in S-Plus which intergates
the GEE-function by Liang and Zeger (1986). '

2.1. Mean Response of Heart Ba_te

In each case, values at the beginning of global ischemia (-20 min) were defined as 100% to a
uniform standard and the reperfusion results were related to that proportionally to compare
reperfusion values of the heart rate at individually different values at the beginning.

At the heart rate the mechanic heart rate was valid. This lead to the following: a ventricle
tachycardia lasting more than one minute, which got along without or with minimal pressure
development was calculated with a heart rate of O/min in this minute because an estimation of the
heart rate of e.g. 1000/min would not be very useful.

In the early phase, the model with all three factors showed that both the main effect and all
interaction effects with L-carnitine have no significant impact on the heart rate. Therefore, the next
used model was a REML-model which was calculated with the factors sodium palmitate and time
only. The most important results can be found in table 1. Next to the parameters the naive z-value
and the robust z-value are given in brackets (see chapter 1.3). The z-values have an asymptotic
standard normal distribution. Thus, they have to be absolutely higher than 1.96 to get a significant
difference from zero for the parameters at 5% error probability.
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Table 1. Models of heart rate in the early reperfusion phase.

35.59 (7.37) |-11.07 (-1.62) 346 (5.72) 2.21(2.59)
3559(7.43) | -10.93 (-1.61) 3.46(5.67) 2.19(2.52)

35.86 ( 6.88 -12.35(-1.67 3.27(4.48 2.60 (2.52
6.03) 1.82) 4.21) 2.76)

3531 (8.54 -14.49 (-2.48 3.53(8.95 2.73 (4.88
5.79) -2.11) 4.34) 2.77)

The ML approach results in similar parameters (s. table 1). Parameters were also estimated with
GEE under the assumption of Gaussian distribution and stationary M-dependent of the correlation
structure. Stationary means, for time points with the same distance an equal correlation is assumed.
M=1 means, that only adjacent time points are correlated. Thus, in the estimated working
correlation only the diagonals that are directly next to the main diagonal are filled with the same
values, whereas all the other fields are zero. At M=2 both side diagonals (to each side) are filled
with one value in each case. A similar model as REML shows a possibly high M (here 9 for 10

- moments of time). As the parameters drop according to a regulation to side diagonals of working

correlation matrix at REML, REML needs one parameter only. The last model that is illustrated in
table 1 shows that all correlations are assumed to be equal, which means they are called
exchangeable or compound symmetry. Similarity of estimations in table 1 is related to their

(=] T
@ JRTTETI

s 2

™

>

[

=

= o |

o (-}

w

«

L

§

& 3

2

8

=

2 2 -

E — 0.4 mmol/l Na-paimitate
E o 1.2 mmol/!l Na-paimitate
o
Lor ]

6

Time in minutes

P

3 1 Mean values of heart rate grouped by Na-palmitate and REML estimations (dotted
..the early reperfusion phase.




374 E. Schuster, C. Schilesinger and H. Lister

asymptotic consistency, but there was no convergence for stationarity with M=1. An advantage of
the integrated GEE-function in OSWALD is to give not only naive but also robust z-values.
In the early phase of reperfusion the heart rate recovers significantly faster at higher concentrations
of sodium palmitate than at lower concentrations. Figure 1 shows the mean value courses in the
sodium palmitate groups and their corresponding REML-estimators

y, = 3559 + 3.46 * time

y,= 35.59-11.07 +(3.46+2.21) * time.
A higher heart rate which is kept during the late phase is achieved at the end of the early phase by
the faster increase at higher sodium palmitate. It is only Na-palmitate that remains an influencing
factor because neither time nor L-carnitine have significant influence on the heart rate in the late
phase. Analogous variants as above are summarized in table 2. Even M=1 has useful results,
although they are between 0.677 and 0.921 with M=8 estimated correlations.
This is the reason why even the GEE-model with compound symmetry gives good estimators with
a correlation of 0.813. Figure 2 illustrated mean value courses in Na-palmitate groups in the late
phase. The corresponding REML-estimators are shown by dotted horizontal straight lines.

Table 2. Models of heart rate in the late reperfusion phase.

72.03 (19.11) | 16.50(3.10)
72.02 (19.68) 16.52(3.19)
72.08 (19.98 16.51(3.24

17.53) 3.27)

71.09 (29.88 18.18 (5.40
16.12) 3.40)

72.41 (19.82 16.06 (3.11 :
17.29) 3.1D | =
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Figure 2. Mean values of heart rate grouped by Na-palmitate and REML estimations (dotted
lines) in the late reperfusion phase.
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2.2. GEE Models for Degree of Tachycardia

For registration and quantification of disturbances of the cardiac rhythm in the reperfusion phase an
arrythmia score was developed which subdivided tachycardiac and bradycardiac irregularities of the
rhythm into 4 different degrees in each case. Here, only the change of tachycardia-scores of the
early phase of reperfusion can be illustrated. It is only possible to monitor the score in four degrees.
Thus, a GEE-model with Poisson distribution and logarithmic link function was useful, i.e.

In( E(y; )) = X or E(y; ) = exp(X,B).

In the early phase, the model with all three factors showed that both the main effect and all
interaction effects with Na-palmitate have no significant impact on the tachycardia. Another term
exp(-time) was taken because models with L-carnitine and time did not show sufficient adjustment.

Table 3. Models for degree of tachycardia in the early reperfusion phase.

0.923(8.58 | 0.177(1.20 | -0.049(-4.57 | 0.749 (2.56 | -0.003(-0.18 | -0.101 (-0.25
10.05) 1.14) -6.71) 2.40) -0.26) -0.22)

0.944 (10.64 | 0.149 (1.62 | -0.050(-6.86 | 0.694 (3.48
12.87) 2.03) -10.23) 2.94) _

The results are given in the first row of table 3. This table was done analogously to table 1
(compare chapter 2.1.) Interaction terms can be left out because the last two columns of table 3
which contain interaction terms have only very low z-values. The solution of the developed model
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in the early reperfusion phase.
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is given in the second row of table 3. In this case, at three parameters robust z-vaules are higher
than naive z-values in respect to the amount.

Besides a statistically determined influence of both time parameters robust z-values also show an
impact on L-carnitine at a niveau of 5%. That means, the tachycardia normalized faster in the group
with L-carnitine. The corresponding graph of the estimated GEE-model are shown in Figure 3.

y. = exp( 0.944 - 0.050*time + 0.694*exp(-time) ) with L-carnitine and
y, = exp( 0.944 + 0.149 - 0.050*time + 0.694*exp(-time) ) without L-carnitine.

In the late phase of reperfusion non of the investigated factors had a significant influence on the
development of the tachycardia.
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