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ABSTRACT

This paper is concerned with the nonparametric maximum likelihood estimation (NPMLE) of a survivor
function G from incomplete samples. An approach is suggested which allows for an exact maximization
of the likelihood with finite number of steps by dynamic programming. The method provides in particular
the maximum likelihood estimates (MLE) of the number and location of the support points of the empirical
distribution. It offers an isotonic solution when the monotony property is not inherent to the empirical
distribution function. Examples for doubly censored and discrete surveillance data are given.
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1 INTRODUCTION

This paper deals with nonparametric maximum likelihood estimation (NPMLE) of the
survivor function of a nonnegative random variable which is incompletely observed. In-
complete data samples usually arise in the reliability analysis and biological studies when
a failure or disease onset is unobservable either due to its nature or to a specific design
of a study. ‘It is not uncommon that a sample does not contain accurate times to fail-
ure, or there are quite few of them. In such cases the extent of information in a sample
turns to be quite poor even if the sample itself is large. The estimate also termed the
empirical survivor function is thought of as a nonincreasing function, which maximizes
the ” probability” to observe a given sample. The problem of nonparametric estimation of
the distribution function from incomplete samples has been studied by many authors. For
particular study designs as for example the follow-up with right noninformative censoring
the problem is well-studied (Cox and Oakes(1983)). Further attempts to allow for other
designs of a study were based on the ”self-consistency” condition first formulated by Efron
(1967) with respect to the product-limit estimate. The concept of ”self-consistency” was
extended by Turnbull (1976) who developed an iterative algorithm converging to the max-
imum likelihood estimate of the distribution function with arbitrary grouped, censored and
truncated data. The algorithms based on the self consistency property although derived
on the statistical basis are essentially close to the conventional nonlinear programming
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algorithms. They are approximate iterative procedures requiring the initial point in the
domain of local convergency, which is in most cases uncertain.

In the present paper an alternative approach is indicated, which allows for an exact solu-
tion with finite number of steps. However, an analytic effort is required to construct an
algorithm specific to a given type of data. Proceeding from the Bellman’s equations a
particular algorithm is developed in detail. It was applied to either right or left censored
data (termed doubly censored for short) and to data arising from a discrete surveillance
study.

2 NONPARAMETRIC MAXIMUM LIKELIHOOD
ESTIMATE

Let the set 7 = {t;}12, represent the observed ordered sample times from a homogeneous
population with survivor function G(t). Generally, the sample times are labelled to indicate
the number and the type of events observed at t;. For example, if right censored data are
considered, each ¢; is accompanied by the number of failures m; and the number of censored
items n; observed at ¢;. Given the data, the loglikelihood ¢ can be considered on the space
of survivor functions . The problem of NPMLE will be to maximize £ on F

max 2€G). (26.1)

Usually ¢ is maximized by taking G a discrete survivor function with support points 7;
at some of ¢;, and we will proceed from this assumption, which can be verified given
specific likelihood. With the right censored data the support points will be at those ¢;,
for which m; > 0 (the Kaplan-Meier estimate). Formally, the empirical survivor function
will be defined as a right continuous step function with the vector of support points

- def def .
Sn=(T,-- ), TET,1=1,...,0, n <M, Thy1 = Tn, To = 0 and with values G; of

G(t) in the intervals [;, 7i41), 1 =0,...,n, Go & 1.

The above approach to derive an empirical distribution function is heuristic in a sense that
the set 7 is random, although treated as fixed, and the number of parameters G; grows
with increase of the sample information (Kalbfleisch and Prentice (1980)). A rigorous
study would require the estimate to be treated as a counting process in ¢ (Fleming and
Harrington (1991)), which is feasible only for simple estimates that are available in a
closed form. It should be noted that if the set 7 is fixed in advance (as the case with
discrete surveillance), standard likelihood theory applies.

Two equivalent definitions of F can be suggested

I G(t) has a step at each t;, i« = 1,...,m, and the step-values AG; e Gi—1 — G; are
nonnegative (AG; = 0 is allowed).
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II G(t) hasstepsat 7; € T,1=1,...,n, n < m, and the step-values are strictly positive
| AG; >0, i =1,...,n. In other words F = U™ F;, where F, is a class of functions
having exactly ¢ strictly positive steps on 7.

According to the first definition we have to maximize ¢ with respect to G; under the
constraints AG; > 0, 1 = 1,...,m. In what follows we will make use of the second
definition to avoid the constrained maximization.

With complete or right censored data a conventional approach is to set s, equal to the
times of the observed failures and maximize the likelihood with respect to the remaining
parameters G;, which leads to well known estimates. With other types of data, postulating
s, may lead to an estimate which does not satisfy the monotony constraints as demon-
strated in the next section. This is an indicator that the search for the optimal n, s, should
be performed.

3 SURPRISES OF INCOMPLETE DATA

3.1 Doubly censored data

Suppose that we have a sample of either right or left noninformatively censored data
{ti, 6,;}, where

5= { 1, if t; is left censored

0, if ¢; is right censored,

i =1,...,,m. For such data

n-1
{ = Z m; ln(l - Gt) +n; ln(Gi)a

i=1

. ) where S s

m; =
k:tp €[TiiTig1)

is the number of left censored cases in the ith interval between the adjacent support points,

and
n; = Z (1 - 51«:),

k: th[T,';T,'+1)
is the number of right censored cases in this interval. 1 =1,...,n — 2, 7, = tn,

Mp-1 = Z 6k7

kiti€[tn—1;tm])

Np-1= Z (1 - 51:)

k: tkE[Tn_]_;tm]




338 PAPER 26

Maximizing ¢ and ignoring the monotony constraint, we get the following estimate

Gi= —2 _ i=1..n-1 (26.2)
m; +n,;

Suppose we try to find G:with steps at each sample point 7; = t;, t = 1,..., m. If the data
are untied, the estimate G would look like a chaotic sequence of jumps from zero to one
and back since in this case G; =1 — §; (Figure 1A).
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Figure 1: Survivor curves for doubly censored data. Solid line is the "true” survivor
function used in computer simulations; stepwise curves are the nonparametric estimates G

(A) and the estimates G resulting from application of the dynamic programming algorithm

(B).
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This problem was addressed as early as in 1955 by Ayer et al. The estimate was considered
as a function having exactly m steps and the step-probabilities were allowed to be zero
(definition I of the class F). In Ayer et al. (1955) an effective algorithm was found
to solve the problem in the context of constrained optimization for this particular case.
The algorithm was named for the pooled-adjacent-violators one and it has prompted the
development of isotonic theory (Barlow et al. (1972)). According to this algorithm, the
estimate G; = 1 — §; is a starting point. The following step is repeated in arbitrary order.
If some adjacent values G;, G;;; violate the monotony property, they are pooled i.e. the
step-probability at the point ¢ is set to zero and both G; and G, are substituted by a new
G, the subsequent estimates being newly enumerated starting from ¢ + 1. It was shown
by Ayer et al. (1955) that the resultant estimate is consistent and moreover is closer in
average to the true survivor function than G;. It is remarkable that the solution can be
interpreted as the search for optimal grouping s, (see Asselain et al. for more details).

With doubly censored data, application of the algorithm suggested in Section 4 provides
the same solution as the algorithm by Ayer et al.

3.2 Discrete surveillance data

Suppose that a failure can be detected only by means of some test with probability p
and that such tests are performed at times {¢;}2,. In addition the time to detection
may be right censored. Such design of a study arises for example when a population
of initially healthy individuals is repeatedly tested to detect cancers (cancer screening or
surveillance) or in reliability theory when some units are tested to detect unobservable
failures which cause damage. The times {¢;} form a so-called surveillance strategy and
are fixed in advance. There are sorts of control problems which can be solved to optimize
a surveillance strategy. We refer the reader to Beichelt and Franken (1983), Parmigiani
(1993), Tsodikov and Yakovlev (1991), Tsodikov (1992) for such examples and focus on
the statistical aspect of discrete surveillance.

The sample generated by a discrete surveillance study consists of

N - the initial size of the target population;
m; - the number of failures detected at the test performed at t;;

n; - the number of right censored observations in the interval [t;_y,t;).

With p = 1 this design turns to be equivalent to that related to the life-table estimate. If
in addition each individual is tested only once and ¢; is the time of examination of the i-th
individual, the design will be reduced to the doubly censored case.

In what follows we assume that p < 1 and ¢; is the time when the whole population is
tested all-at-once and that we have a sequence of such tests 7 = 1, ..., m. If a failure occurs
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in some interval [t;_,,¢;) it will be detected at ¢; with probability p, at ¢;,, with probability
(1 =p)p, ... etc. In other words, the time of detection conditional on the failure entering
[ti1,t:) is given by t;_i4¢, where £ is a random variable following the geometric scheme
with parameter p, truncated by the last test ¢,,.

Introduce the unconditional survivor function @ of the time to detection of failure, which
is related to the distribution of time to failure by the following recurrence relations

AG; = %(AQi —gAQiy), (26.3)

1=1,..,m, ¢=1-p, AQ); =0 — Qi1|-
For each t, the number of patients at risk will be given by Ny = N =5 (m; +n)), k =

0,...,m, 3% = 0. The likelihood function is based on the observed detection process and
is 1dentlcal to the multinomial likelihood arising in the context of right censored data

m
£=> m;In(AQ;) + n; In(Qi—1) + N In(Qr)- (26.4)
=1
Following the derivation of the Kaplan-Meier estimate we try to find an estimate of the time
to failure survivor function which has a step at each ¢; ignoring the monotony constraint.
Such an estimate was derived in Tsodikov et al. (1995). The reasoning was quite simple.
Using the invariance property of the ML estimate it is possible to estimate the time to
detection survivor function @ as a Kaplan-Meier estimate Q
A : N,
Q=
' kl;IlNk-l — N
Then using equations (26.3) expressing G in terms of Q it is easy to extract the estimate
G. The resultant estimate may be written in a closed form

i—-1
11 v
AGi = — [mi — qmi_1 +
H (Nk-1 — 1)

(26.5)

Since the estimate AG; may be represented by a linear combination of the life-table ones,
it inherits the properties of the latter, the consistency among them.

It is interesting to note that the monotony property is likely to be violated by (26.5) if the
probability of mistake g is large. Indeed, in order that AG; be nonnegative, i = 1,....m
we have to demand that the expression in square brackets in (26.5) be nonnegative. This
can be written as

“m; > qmi_lu, i=1,...,m. (26.6)

| Ni1

and the point becomes clear. For p = 1 (¢ = 0) the inequalities (26.6) hold automatically.
With increase of q the amount of information in the sample {m;,n;} generally decreases

@
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and this causes violation of the monotony property (Figure 2A). If the number of detected
cases decreases too much at some ¢; as compared to the previous test, it becomes unlikely
that the survivor function has a step at t;, since this would add to the number of detected
cases. Again, a search for the optimal distribution of steps on 7 is suggested.
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Figure 2: Survivor curves for discrete surveillance data. Solid line is the ”true” survivor
function used in computer simulations; stepwise curves are the nonparametric estimates G

(A) and the estimates G resulting from application of the dynamic programming algorithm

(B)-
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4 THE ALGORITHM

Assume that given the vector of support points s; and ignoring the constraints AG; > 0,
it is easy to maximize the likelihood with respect to the remaining parameters G;

lsn) = jmax ¢(Glsa) = £(Clsn) (26.7)

by solving the likelihood equations aa—(i = 0,7 =1,...,n. Instead of treating (26.1) as
a problem with constraints, we reduce it to a number of unconstrained problems (26.7)
and make use of the dynamic programming to improve the efficiency. The main idea will
be to solve (26.7) for various n, s, and to choose the monotone function with the largest
likelihood. The procedure may be also looked upon as the search for a discrete model on
T which would provide the best likelihood of the observed data.

Take some survivor function G € F; with k steps. Note that as some of AG; tend to zero,
the limit survivor function has less than k positive steps. For this reason the set U_! F;
will be the limit set of the set Fy, £k =2,...,m, which we denote by

UEF =T(F), k=2,...,m. (26.8)

Consequently, the closing Fy of the set Fj contains all functions that have not more than
k positive steps Fr = F, UL(Fy) = U{F:l.’Fi. Evidently, the sets F; are nested

FCFRC...CFn="F. (26.9)

Since the solution of (26.1) G is a function which has some positive steps, it should be a
solution to one of the problems

sup 4(G), n=1,...,m, (26.10)
GEFn

with sup attained in an inner point of F,, which means it must be the solution of (26.7)
and must satisfy the likelihood equations and the monotony constraints for some unknown
n, s, (to be found). If the solution of the likelihood equations (given n, s,) does not satisfy

the monotony constraints, then max ¢(Glsy) is attained at the limit point of the
1>G1>..>Gn>0

set F, (which does not belong to F,). Consequently, we can replace (26.10) by

max #(sy), #(sn) = £(G|sn). (26.11)
sn:GEFy

Finally, we arrive at the problem

max _max  £(sy). ' (26.12)

n=1,..,m s .G — monotone

By virtue of (26.9) the optimal n will be the largest possible one such that the monotone
solution of (26.7) exists for some s, (the estimate must be as detailed as possible). If by
chance the solution of (26.7) with G having a step at each ¢; is monotone, then it is the
optimal one.
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Since the step-times comprising s, are taken from the observed sample 7, we may rep-

resent s, by the indexes (ranks) A;, j =1,...,n of those ¢; at which a positive step of the

def

: .. : def
survivor function is assumed 7; = ty,, i = 1,...,n, Ag = 0, A\, = m. So, to find max we
Sn

could look over (’::11) combinations of {\;}27" on the grid {1,...,m—1} and compute the
likelihood £(s,,) for each of them. However this would be an inefficient procedure. Further

improvements in the efficiency have to do with the specific properties of the likelihood and
the dynamic programming technique.

In the examples considered in Sections 3,5 the likeihood #(s,) can be represented in the

form
n—1

Usn) =Y (X, i), (26.13)

=1
where ¢ is some function of the adjacent step-times. The monotony constraints are sup-
posed to be in the form

wi = ’(/)(Ai—ly ’\i;/\‘i+1) > 07 1= 21 et — 17 d’n()‘n-—ly /\n) > 0.

The efficiency of the algorithm depends on the ”depth of interaction”, i.e. on how many
variables appear to be the arguments of the functions ¢ and . For a particular example
the main concern will be to derive specific expressions for ¢ and 7.

The next step will be to derive the Bellman’s recursive equations for the problem (26.12)
with £ given by (26.13). Imagine that the optimal step-time 7,,_1(An_1) is available. Then
the following problem remains to be solved

n-2
max > o(Aiy A1) (26.14)

Aty e An-2 i=1
Y2>0,..,¢¥a-1>0 T

Reasoning from this observation we may write

— (n—~2)
sn,w‘-gcl),aiim...,n Usp) = /\“_rnhadf:)0 14 (An=1; An) + ©(An=1, An)s (26.15)
n-—-2
where Z("'z)()\n_l, An) = E ©(Ai, Ais1) given that Ay, ..., Ap_o are the solutions of (26.14).
i=1

Along the similar lines we get
k-1

max 3 i i) = max_ L5, M) + o(Ak-1, M), (26.16)
Al,...,Ak-l i=1 Al‘_l,wk>0
Y2 >0,..,¢ >0
k-2
where E("‘2)(/\k_1, Ak) = Z ©(Aiy Aig1) given that Aq, ..., Ag—2 are the solutions of the prob-
~
lem '
| k—2
, max > oM di1), k=3,4,..,n—1. (26.17)

1

$2>0,.., k-1 >0 =
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If the solution of (26.17) is empty £~2) is set to —co.

The recursive relations (26.15), (26.16) present specific forms of the Bellman’s equations.
Based on (26.15), (26.16) the k-th step of the procedure (k = 2,...,m — 1) is given by

= Step k.
- Forevery M1, M\ : E—1< My < A < m find ‘
(k—3)
Ak—2: k —gnsa‘,}\i_z < Ak—1 g (/\k—za /\k—l) + (,O(Ak_z, Ak—l)a
Ye-1 >0

If k> 3then A,z =1,...,k — 3 and £*-3) are known from step k — 1, otherwise
£%6=3) = 0,

- Register £5=2)(Ac_y, A¢) and the solution Ay, ..., Ap_» as functions (arrays) of Ag_, A
to be used at the next step.
- Find
max 5D (Ne_y, m) + p(Akoy, m).

Ak-1 k=1< A1 <m
wn(Au—lvm) > 0! n= k

The solution of the above problem is equivalent to that of the problem

Ik = max Z(G'lsk).

$x:G — monotone

In the above step maximization is performed by exhaustion. The combinations of variables
which does not satisfy the constraint are skipped. If the solution appears to be empty, Ik
is set to —oo. At the first step we just compute I} = #(G), where G has just one step at

tm. At the last step (m) we find £, = £(G) with G having steps at each t;, i = 1,...,m.
Finally, G corresponding to the largest I; will give the sought-for NPMLE G.

4.1 Complexity

As an elementary substep of the procedure we will take the computation of £0) = ¢G-1 4+
and checking the constraint ;4 performed as an elementary unit of the exhaustive search
at each step of the procedure. To characterize the complexity we use the total number
C of elementary substeps contained in the steps 1,...,m: C = > k=1 Ck, where Cy is the
number of elementary substeps at step k. We have :

C'1 = 1’
m-—1
C, = ( ):m——l
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Ck = [{/\k—%/\k—l;/\k k=2 < A9 < Apop < A < m}l + (2618)
'{/\k—l k-1 S /\k—l < m}l =
(m—§+3)+m—k+1 k=3 ..,m—1,

Cn = L

Summing up the Cy in (18) we get
m = (1
=—(m-1 .
C== (m-1)+ ; (3>

Let us find S =Y, (;) Consider the function

F(s)=>(1+s)
Jj=3
and note that
1d°F(s) ) N 2 o
S = lemo = ZJ -3% 7 +23 j]. (26.19)
6 ds3 o’ i=3

It can be proved by induction that
m(m+1)2m+1) & ( m+1))

22 6 ,ZS 2

Substituting (26.20) in (26.19) after a little algebra we obtain

(26.20)

_mm+1) ,
S D P |
mA
C= S+——(m-—1) PR

Practically the functions ¢ and % can be tabulated before the algorithm starts, so that
each substep contain only a couple of elementary arithmetic operations.

A typical cancer surveillance program takes about 10 years with a testing frequency
between ”once half a year” and ”once every two years”. That means, we have to compute
¢ and ¥ not more than 7000 times, a simple task for a PC.

5 THE ESTIMATE WITH DISCRETE SURVEILLANCE
DATA

To apply the algorithm we need to generalize (26.5) to allow for the steps to occur arbitrary
on the set 7 = {¢;}™,. Because of a monotony restriction, the argument with the Kaplan-
Meier estimate for the time to detection survivor function Q used in Subsection 3.2 breaks
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down. To derive an estimate which generally has less than m steps, introduce an n-
step-function P which coincides with (m-step-function) @ at the step-points th—1, T =

11 N + 17 )\n+1 déf n + 1 such that
P(ty, —0)=Q(tr, —0), i=1,..,n,

or
Pi=Qx-1,i=1,.,n4+1, =1, P = P(n).

By definition the function P has as many steps as G and we can look for an argument
similar to that of the Subsection 3.2. It is convenient to represent P, in terms of variables
P;
Py
It is not difficult to show that the likelihood (26.4) can be rewritten in the form (26.13)

with

0<r<1, i=1,..n

Ty =

©(Ai; Aig1) = (N,\m_l - n,\m) In(rs) + MO In(1 — 7)) + MO +

Aigr—1 1 k—=X;
—-q +1 )
NgerIn |1 — (1 =7y ———,—_}, 1=1,..,n—1, 26.21)
k=ZAi +1 { ( ) 1 _ qAH.l—/\; (
where
Ait+1—1
M= Y m,
k=);
\ Ait1-1
MP = 3 m(k - M) In(g),
k=X

3) _ 2s() l1-g¢ @)
Mi = Mi ln (1 _ q’\H—l—’\i) =+ Mz .

The derivation of (26.21) as well as other details are outlined in the Appendix. The function
¥ which describes the monotony constraints is given by

1

w_ 1—ry 1- ‘ril—l 1/) — 1~ — a1 (26 22)
l_q)\,'-q.x—)xi I_EXT—IX:’ n p l—qm_-i';,__l, .

¢t =1,..,n =1 And finally the variables r; = r;(\;, \;41) are obtained by solving the
algebraic equations

Aig1-1 (1)
Nz\.'+1-1 — iy + z Nk41 _ Mi . (26 23)
- g Nt _grie=X T 1=r1." :
? k=X Ti+ TogF—FT :

t=1,..,n. It is pleasant to note that the right part of (26.23) is increasing with respect
to r; from MY (r; = 0) to co (r; = 1), while the left part is decreasing from oo to its
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value at r; = 1. Therefore there exists the unique solution of (26.23) for each i =1, ..., n.
The function G is given by

- i-1 1 =7 1- -
AG; =T r : LI 26.24
kI——-:[l ¢ 1- q,\i"'l—-)\1 1- qxi 1X1-1 ( )

0
i=1..,n %1 AG =0, [[=1

1
Once the algorithm has been applied and the values r;(A;, A;+1) have been found, the
sought-for estimate G is drawn from (26.24).

It is not difficult to verify that in case A\; = 4, i = 1,...,m, n = m we will have (26.5)
instead of (26.24).

Another particular case is of interest. If the censoring is of type I (observations are
censored only by the end of the study), i.e. if n; =0, 7 = 1,..., n, then the roots of (26.23)
are available in the closed form

N/\_H.l—-l

—en =1

? )
Nz\j—l

T; = veey N

6 NUMERICAL EXAMPLE

For an example of application of the dynamic programming algorithm we have simulated
a sample {z;} of 50 points from the two-parameter Gamma distribution with density

o]
f@t) = fﬂ(—a—)t“‘le'ﬂt, a>1, t>0.
The shape parameter o and the scale parameter 3 were taken to be 2.0 and 0.1, respectively.
Then the simulated observed process was imposed to generate the observed data for the
doubly censored design and for the discrete surveillance one. The doubly censored times
{t;}™,, m = 50 were generated from the uniform distribution on the interval [0,30] and the
i-th member of the initial sample was taken as right censored if z; > ¢; and left censored
otherwise. As to the discrete surveillance, the test times {t;}72,, m = 10 were taken
at each 5-th point of the initial sample. Then the detection process was organized. For
each failure entering the interval [¢t;_y,t;), ¢ = 1,...,m the value of { was generated from
geometric distribution (with p=0.5) truncated by m — ¢ + 1. The time of detection was
taken to be t;_;+¢. If undetected until ¢, the observation was declared as censored by the
end of the study. In Figures 1 and 2 the results of estimation of the empirical survivor
function are shown for the doubly censored design and for the discrete surveillance one,
respectively. The (A) part of both figures contains the true curve and the estimate G
having steps at each t; disregarding the monotony constraint. The part (B) presents the
true curve and the estimates of the empirical survivor function resulting from application
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of the algorithm. From these figures it is evident that in both examples the estimate should
be taken less detailed than the samples which are "noisy” and therefore unable to provide
enough information to make the estimate G monotone.

7 CONCLUSION

The proposed algorithm is primarily oriented to the analysis of small (or low information)
samples. An indication of such a case could be either the violation of monotony by G or
its instability to the choice of grouping. With large samples with enough information for
the asymptotic ML theory to be applied with respect to G, we do not need this algorithm,
because in this case G is monotone and stable as a.consistent estimate and therefore can
be made as detailed as desired. However, for example in medical applications this is not
the case more often than not. The field of application of the proposed algorithm is not
limited to searching for the empirical distribution function. It might be reasonable for
example to minimize the chi-square statistics when testing a parametric hypothesis with
respect to grouping n,s, thus avoiding the problems associated with instability of the
conventional test to the choice of grouping. However, the asymptotic distribution of the
modified statistics may turn to be other than x.

APPENDIX A

We are going to derive (26.21)-(26.24). In doing so we proceed from the likelihood in the
form (26.4), where the time to detection distribution @ and the time to failure distribution
G are linked by

AQi = Q(ti—1) — Q&) = p(G(ti—1) — G(t:)) + ¢AQi—1. (A1)
Since the function G actually has steps at points ; = t,,, i = 1,...,n, we have
G(tj_l) - G(tj) =0,j=A, i+, -1, i=1,...,n—-1. (A.2)

Recall the step-function P, introduced in Section 5
Pi=Qy_n,i=1,.un+1, By=1, P,=P(1}), dot1 Em +1. (A.3)

and its presentation in terms of variables r;

1
Pi = Hrk, 1= 1,...,n.
k=1
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Using (A.1) and (A.2) the values AQ,, = Q(r; — 0) — Q(7;) can be expressed in terms of
the function P

1-g¢ 4
AQ}\i :AR m, Z:].,...,TL (A4)
Let us rewrite the likelihood (26.4)
n Aigi
= Z m; In(AQ;) + nipr In(Q:)] - (A.5)

In (A.5) use was made of the following remark. For i = 0,1,...,A; — 1 it must be m; =
0, AQ; =0, @; = 1. In other words the prevalence must be zero before the first step-
point, since with probability 1 there are no failures on [0,7;). From (A.1) and (A.2) we

also get
AQk = AQ)\.'qk_)‘i7 k = /\i7 Ai + 17 ey )‘i+1 - 17 (AG)
i=0,,n, MNE0 Mo ¥m+1, AQ ¥o.
Equation (A.6) and (A. ) 5) combined give

£=Y | MO n(aQx) + MP+

i=1
Aip1-1 ) 1 — gk=rit+l '
Z Ng+1 In (QA;—). - AQ«\._I——)] ) (A7)
k=A; - q
Ai41—-1 dig1-1
MO = me, MP = 3 me(k-X)In(g), i=1,..,n

k=X; k=X
With the help of (A.3) and (A.4) we rewrite (A.7) in terms of variables r;

n
¢= [(M“) +NY) Z In(r;) + MP In(1 - r;) + MO+

) i=1 j=1

AH-]. 1 . 1 _ qk_A.+1
kgi Nkl In {1 - (1 - Tz)l—_"‘(}m"}] (A8)
@3 _ 1—-¢ @
) Aig1~1 0
Ni = z Nk+1, 1= 1,...,1’1,, Z:
k=X 1

Next, changing the order of summation we obtain

n i-1 n-1 n-1
> (MO +NO) Sin(ry) = Y In(ry) 3 (MY, + NS)) =

i=1 j=1 j=1 i=j
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n—1
Z ln(rj) (‘N)\jﬂ—l - n/\j+1) .

J=l1
Substituting this in (A.8) we arrive at the presentation (26.13) for the likelihood with ¢
in the form (26.21). '

To maximize ¢ with respect to r; we take the derivatives

8€ — 6(,0(/\3‘,Aj+1) _

aT‘j 67‘]'
(1) Aj1~1
N)\j+1—1 '—n/\j.;.l _ M] + k41 =0
Tl aax — U
. —_r. JT g LT
T l—rj = o+ 8 1_qk-qaj+1

j =1,..,n— 1. It is not difficult to note that this expression can be extended also to
J = n by virtue of the conventions mentioned above. In particular,
0  Np Mm_ _

or, 1, 1l-—r,

and consequently
N

Tn = __—-—u
Nm-—l — Ny

The latter expression as well as the function ¢(\,, Ap+1) does not depend on the sought-for
{\:}25) and therefore @(An, A1) can be omitted in £. The representation of the monotony
constraints

AG; > 0, i=1,..,n

in terms of r; follows directly from (26.24), the latter being due to (A.1), (A.4) and (A.6).
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