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SUMMARY

This paper discusses a method of estimating numerical characteristics of unobservable stages of
carcinogenesis from data on tumor size at detection. To this end, a stochastic model of spontaneous
carcinogenesis has been developed to allow for a simple pattern of tumor growth kinetics. It is
assumed that a tumor becomes detectable when its size attains some threshold level, which is
treated as a random variable. The model yields a parametric family of joint distributions for tumor
size and age at detection. Some estimation problems associated with the proposed model appear
to be tractable. This is illustrated with an application to the statistical analysis of data on primary

breast cancer.

1. Introduction

The presently most popular two-stage model of carcinogenesis, also known as the Moolgavkar-
Venzon-Knudson model (Moolgavkar and Venzon, 1979; Moolgavkar and Knudson, 1981), is fo-
cused on the events that precede the occurrence of the first malignant cell in a tissue. It is a common
feature of many modern mechanistic models of carcinogenesis that they are devoid of the stage of
tumor progression and mechanisms of tumor detection. The reason is that such models are basically
intended for the analysis of time-to-tumor observations, which are likely to contain less informa-
tion than is required for identification of a more complex model of tumor development. However,
there is no relevant evidence that the time of tumor progression is negligibly small compared with
the duration of earlier stages of carcinogenesis. This is fully appreciated by key contributors to
this trend of research (Yang and Chen, 1991; Luebeck and Moolgavkar, 1994; Kopp-Schneider and
Portier, 1995). A deterministic delay incorporated into some versions of the Moolgavkar—Venzon—
Knudson model to describe the growth kinetics of malignant cells cannot be considered a cure for
this difficulty (Kopp-Schneider and Portier, 1995). This pertains equally to the model of radia-
tion carcinogenesis developed by Klebanov, Rachev, and Yakovlev (1993) and its generalization by
Yakovlev and Polig (1996).

A mathematically appealing class of models allowing for a stochastic description of the progres-
sion stage is constituted by so-called threshold models. This name comes from the assurance that
a tumor becomes detectable when its size attains some threshold level. As one example, tumor
growth can be assumed to obey the postulates of a supercritical birth-and-death process with two
absorbing states so that the first passage time with respect to the upper barrier will correspond
to the time of tumor progression. The idea was explored with models for microbial infections with
deterministic thresholds (Williams, 1965; Morgan and Watts, 1980). The results of Morgan and
Watts (1980) suggest that incubation period data alone are insufficient for model identifiability.
One is likely to face the same identifiability problem when attempting to develop a similar model
for analysis of time-to-tumor observations.
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The problem calls for an additional source of information. As suggested by Yakovlev and Tsodikov
(1996), this information might be provided by data on the primary tumor size at detection. The
papers of Yakovlev et al. (1996) and Hanin et al. (1996) further explore this possibility. The authors
proposed a threshold counterpart of the two-stage model of carcinogenesis, which makes it possible
to estimate biologically meaningful parameters of initiation, promotion, and progression from data
on tumor size at detection and age of the individuals (patients) diagnosed with a specific cancer.
Their approach, which is briefly outlined in Sections 2-4, represents an alternative to some other
endeavors to relate the chance of detecting a tumor to its size (Brown et al., 1984; Bartoszynski,
1987; Kimmel and Flehinger, 1991; Klein and Bartoszynski, 1991). The proofs of theoretical results
are given in Hanin et al. (1996). The purpose of the present paper is to illustrate this approach
with an application to the analysis of real data (Section 5).

2. The Model
The basic premises behind the proposed model can be briefly formulated as follows.

(i) The initiation event in the process of carcinogenesis is the formation of a primary intracellular
lesion that, in the long run, is capable of prodﬁcix}g an overt tumor. It makes sense to think of
these precancerous lesions as initiated cells. Such primary events of lesion formation occur at
random times, and their sequence in time is modeled as a homogeneous Poisson process with
intensity 6.

(ii) A primary lesion remains dormant as long as it proceeds through the promotional stage of
tumor development. Let R(t) be the cumulative distribution function of this stage duration.
All lesions are subject to promotion independently of each other.

The two assumptions given above are common to most of the modern two-stage stochastic
models of carcinogenesis. To accommodate the data on tumor size at detection, Yakovlev et al.
(1996) invoke the following additional assumptions.

(iii) Once the first malignant cell arises as a result of tumor promotion, its subsequent growth
is irreversible and the progression stage begins. It is this clonogenic cell that gives rise to
a detectable tumor after a lapse of time, which is thought of as a random variable with
cumulative distribution function F(t). ,

(iv) A tumor becomes detectable when its size attains some threshold value N, which is treated
as a random variable. A linear pure birth process with the absorbing upper barrier NV is used
to model the dynamics of tumor growth. The critical number of tumor cells is represented
as N = ¢V, where V is the volume of a tumor and c is the concentration of tumor cells per
unit volume. The constant ¢ is nonrandom and its values are typically large. The conditional
progression time distribution function, given the threshold volume V' = v, is

Ft|v) = (1—e ), (1)

where A is the birth rate. Equation (1) is derived under the assumption that tumor growth
starts from a single malignant cell at time ¢t = 0.
(v) The lengths of the promotion and progression stages are mutually independent.

Let L(t) be the cumulative distribution function of the time it takes for the initiation and
promotion processes to result in the first malignant cell. Derived from the above assumptions is
the following expression for the corresponding survivor function L(t) = 1 — L(t):

¢
L(t) = exp {—6/ R(:c)d:c} (2)
0

(see Klebanov et al., 1993; Yakovlev and Polig, 1996). In Section 5, the two-parameter gamma
distribution will be used to represent the function R(z) in equation (2). Many analyses of exper-
imental data lend support to this choice (Klebanov et al., 1993; Yakovlev, Tsodikov, and Bass,
1993; Yakovlev et al., 1995; Yakovlev and Tsodikov, 1996).

Let g(t | v) stand for the conditional probability density function for the time of tumor latency
measured from the date of birth of an individual. Then it follows from Assumption v and equations
(1) and (2) that

-4 fos R(z)dz

t
g(t|v) = /\Bcv/ e ME) (] — g7 AE=yev—lpig)e ds. (3)
0

.- e

—_—a — N ot o T A A~ A e A A

o

re




A TR - ¢ B 7, B o B

= om

— T e Wl el

Tumor Size at Detection 1497

Introducing a marginal distribution P(v) of the tumor volume V', we represent the probability
density function of the detection time (age of the patient) as

o(t) = /0 olt | v)p(v)dv,

where p(v) is the density of P(v). Now the conditional probability density function of tumor volume
at detection (given a tumor is detected at time t), hereafter denoted by w(v | t), follows immediately
from Bayes’ formula as

g(t|v)plv)  _ g(t|v)p(v)
/0 ot wpwdn I

wlv|t) =

With ¢t and cv tending to infinity, the conditional density w(v | t) assumes a much simpler form,
which is free from the promotion-time distribution R(t). The following formula (see Hanin et al.,
1996, for proof) holds for the limiting behavior of the conditional probability density function

w(v | t): Ly
m
w(v ]| o0) = tlim w(v|t) = Os)&, cv — 00, (4)
—00
/ u¥p(u)du
0
where u = {1,6/)}. A special case (p = 1) of this distribution is associated with what is known as

a length-biased sampling from stationary point processes (Cox and Lewis, 1966). A sampling bias
inherent in screening procedures under a stable disease model (Zelen and Feinleib, 1969) provides
yet another example. Along similar lines, the case of induced carcinogenesis can be considered
(Yakovlev et al., 1996; Hanin et al., 1996).

3. Estimation Problems with Bivariate Data

Suppose that clinical data are available as to the tumor size V and the age A at detection for
patients diagnosed with a specific cancer. First, we assume that such data arise from the joint
probability density function g(v,t) = g(¢ | v)p(v). This assumption is warranted if the effect of data
censoring due to competing risks is negligible (see Section 5). In such an event, the log-likelihood
is represented as :

£= Z log g(ti | vi) + Z logp(v;) = &1 + 2. (5)

2

It is clear that £; and {3 can be maximized independently of each other, resulting in the empirical

distribution function P(v) for estimation of the cumulative distribution function P(v).

More generally, account must be taken of a competing risk that precludes tumor detection from
occurring. To accommodate this censoring effect, we assume that the competing risk of death from
all other causes is independent of the one of interest. The competing risk is characterized by its
latent time Y. Let S(y) be the survivor function for Y. It follows that

p(v) /0 o(u | v)S(u)du

pe(v) =p(v | A< ¥) = —I0_
/0 o(w)S(u)du

and
pe(v)g(t | v)S(?)

/ g(u | v)S(u)du
0

gC(U’t) = g('v,t | A < Y) =

Since S(t) is free from unknown parameters, the log-likelihood assumes the form
o<
b = Zlogg(t,-, | vi) — Zlog/ g(u | v;)S(u)du + Zlogpc(vi), (7)
i i 0 i

which is similar to (5) in that the distribution P(v) is irrelevant to the estimation of the parameters
of g(t | v). The log-likelihood (7) reduces to (5) if S(t) = 1 almost everywhere.
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4. Inference Based on the Limiting Distribution w (v | 00)

The adequacy of the limiting probability density function w(v | o0) can be explored indirectly
through testing the hypothesis of coﬁditjonal independence of V and A given 4 > t*, where the
value of t* is to be estimated from a given sample. This will be put into effect in Section 5 by the
application of Spearman’s test. It is noteworthy that the presence of an independent competing
risk leaves the form of w(v | t) unaltered so that the parameter u = {1,6/A} can be estimated
from a subsample of patients whose ages exceed t*. Let n be this subsample size. Based on (4), the
log-likelihood function is '

tp) = p Zlogvi + Z log p(v;) — nlog E(V¥).

i=1 i=1
Therefore, the maximum likelihood estimator ji* of the parameter u can be obtained as a solution
of the following equation:
E(VAlogV) 1
“EVe Z}log“i' (8)
i
The estimation equation (8) is unbiased since the left-hand side of (8) represents the expected
value of the random variable log V' conditional on A > t*, the right-hand side being its empirical
estimate. Using the Cauchy—Schwarz inequality, it can be shown that, except for the trivial case of
a degenerate random variable V, the left-hand side of (8) is strictly monotone in u, and thus the

equation has a unique solution (Hanin et al., 1996).
The asymptotic variance of 4* is estimated by

2 -1 2 2
e 208] T [ o] s

ou?

We assume that the whole sample size is very large compared to the value of n, so the empirical
distribution function P can be used as a substitute for the true distribution P when making
inferences from the subsample of old individuals. Then the expected values in the left-hand side of
(8) can be replaced with their empirical counterparts related to the whole sample. Denote by p,
k =1,...,m, the frequencies assigned by the empirical distribution function P to the m distinct
observed values of tumor volume. For discrete or grouped data, the limiting distribution W (v | oo)
is estimated by

-1

>

. ©)

It should be noted that estimate (9) provides max,¢(u) conditionally on P. Suppose that pu < 1.

Then the estimate * can be used to reduce the dimensionality of the likelihood ¢; in (5) by
imposing the constraint 8/ = *.

5. Data Analysis

We analyze data on the primary tumor size for 2129 premenopausal patients diagnosed with clinical
stage I-III unilateral invasive breast carcinoma and treated at the Curie Institute between 1981
and 1987. A comprehensive description of these patients is given in the paper of Rochefordiere et al.
(1993). The data include clinical tumor size referring to one-dimensional measurements (in mm).
It is shown to be highly correlated with the size measured by mammography; their mean values
coincide quite closely. Tumors were assumed to be spherical and this approximation was used to
measure their volumes in mm?>. It should be noted that the clinically measured tumor size usually
results in wide grouping intervals (Figure 1). Mean age of the patients was 44.5 years.

First, we should make sure that the limiting density w(v | co) is applicable to our data. Using
Spearman’s test, we tested the conditional independence of V and A given A > t* for various
subsamples created by sampling from pooled adjacent age strata. This procedure resulted in the
value of t* = 50 years with 536 patients older than 50 in the data set. When applied to the whole
sample, the Spearman test rejects the independence hypothesis at a significance level much lower
than 0.001. Based on equation (8), the estimated value of u is 4* = 0.1054 (with the asymptotic
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Figure 1. Empirical tail functions obtained from the whole sample (solid line) and from the
subsample of patients older than 50 (dotted line).

95% confidence interval [0, 0.2290]), which is biologically plausible because it is natural to expect
that the intensity of tumor cell proliferation is much higher than the rate of precancerous lesion
formation. Recalling equation (4), we see that, with u small, the unconditional distribution density
p(v) must be close to the function w(v | o), which is insensitive to the presence of an independent
competing risk. Since the value of 3" is small, the distribution P(v) can be estimated from a
subsample of patients whose age exceeds t*. We denote the empirical counterpart of P(v) thus
constructed by P*(v). The empirical tail function 1 — P*(v) is plotted in Figure 1 together with
the corresponding estimate 1 — P( ) obtained from the whole sample. It is seen in Figure 1 that
the two estimates coincide very closely. This suggests that the discrepancy between the tumor size

. distribution P(v) and the conditional distribution Pc(v) is sufficiently small for the effect of data
. censoring to be ignored. In addition to the trivial case S(t) = 1, one can see from wequat(ions (3) and
" (6) that pc(v) closely approximates p(v) if the parameter ) is sufficiently large. In our numerical
. experiments conducted with large values of A, the ratio pc(v)/p(v) remained close to 1 when the
- mean value of a uniformly distributed censoring time was varied through a wide range. It may not

be out of place to note the model stability under small perturbations in the probability density
function p(v) shown by Hanin et al. (1996).
Now the other biologically meaningful parameters can be estimated by maximizing the log-

t likelihood (5), which accounts for variations of the tumor volume at detection with the age of the
i patient. To maximize £;, use was made of a three-step nonlinear programming procedure based on
random search (Zhigljavsky, 1992; Brooks and Morgan, 1995), the algorithm of Davidon, Fletcher,
b+ and Powell (Himmelblau, 1972), and the Zoutendijk algorithm (Himmelblau, 1972). The procedure

is described at length in Yakovlev and Tsodikov (1996). The coefficient ¢ was assigned a value of

108 cells / mm?® (Klein and Bartoszynski, 1991). The promotion-time distribution was assumed to

be gamma distributed with shape parameter « and scale parameter 3. Incorporated in the model
are two other parameters to be estimated from the data under study; these are the initiation rate
8 and the rate of tumor cell proliferation A\. We first maximized the reduced likelihood £; using
0.1054) in place of §. Having removed the constraint and using the solution of the constrained
problem as the initial point in the search for the maximum of ¢1 (), 8, o, 8), we found the estimates
changed, but very slightly. We obtained the following maximum likelihood estimates of the model
parameters: 6 =169, A = 159, & = 11, ,6 = 0.1027. Given the large value of A\ (short progression
stage), the likelihood (7) yields almost the same estimates of the parameters 6, «, and 3 even in the
presence of heavy censoring. Computed from these estimates, the expected value and the standard
deviation of the promotion time are approximately equal to 107 and 32 years, respectively. The
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Figure 2. Observed versus expected frequencies of breast cancer size at detection for different
age strata. The value of ¢ is taken equal to the midpoint of each age interval.

long promotion stage indicates that only a proportion of tumors, characterized by a high promotion
rate, manifest themselves during the lifetime of an individual. The value of 4 = 8/\ = 0.1063 is in
good agreement with the estimate 4* = 0.1054 based on equation (8).
Using the estimated parameter values, the corresponding parametric estimates of the densities
g(t | v) and w(v | t) can be readily obtained. In doing so, we represent the conditional dlstnbutlon
density of tumor size at detection as -

g(t | vi)pi

Y el vips
J

to contrast it with the corresponding observed frequencies. The resultant fit of the model to the
data. for different age strata is shown in Figure 2. There is a small proportion of large tumors tha.t
are not predicted by the model. This point is worth examining further. .

In this example, the effect of data censoring appears to be small because of the short duration ;
of the progression stage. For tumors with longer progression stages, additional information may be -
called on to estimate the function S(¢) involved in equations (6) and (7). A regression counterpart off
the above presented model offers a natural classification of covariates in terms of their predommant T
effect on different stages of tumor development. This issue will be addressed in another paper.
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RESUME

Ce papier présente une méthode d’estimation des caractéristiques quantifiées des étapes non ob-
servables de la carcinogenése & partir de données concernant la taille de la tumeur au moment
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du diagnostic. Pour cela un modéle stochastique de carcinogenese spontanée a été développé pour
permettre une description simple de la cinétique de croissance cellulaire. Nous posons 1I’hypothése
qu’une tumeur devient détectable quand sa taille atteint un niveau seuil, qui est considéré comme
une variable aléatoire. Le modele repose sur une famille paramétrique de distributions jointes pour la
taille tumorale et 1’dge au diagnostic. Quelques problémes d’estimation associés au modeéle proposé
ont pu étre résolus. Une application du modele & I’analyse de données dans le cancer primitif du
sein est présentée.
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