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SUMMARY

A parametric model is used to investigate the latency time of leukaemia observed in patients treated for
Hodgkin’s disease. In specifying the treatment effect on leukaemia-free survival, account was taken of
a fraction of long-term survivors and of time-changing risk associated with the relapse of the primary
disease. The model is applied to data collected in the International Database on Hodgkin’s Disease. It
permits estimation of the contributions of primary and of relapse treatment to the overall risk of induced
leukaemia. Baseline hazards appear to be identical after primary and relapse treatments supporting the
concept that induced leukaemia have common origin. The probability to induce leukaemia by MOPP
chemotherapy is the same, regardless whether used as primary or relapse treatment. © 1998 John Wiley
& Sons, Ltd.
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1. INTRODUCTION

The last decades have seen dramatic therapeutic progress in Hodgkin’s disease (HD) resulting in
about a 70 per cent cure rate.’*2 This success resulted from the introduction of new modalities of
chemotherapy (CT) and/or radiotherapy (RT). The era of polychemotherapy and combined
modality treatment has decreased the risk of HD-related death and at the same time ‘increased the
risk of second cancers.** Acute myeloid leukaemia (AML) appears to bé associated with HD
therapy providing an up to 100 times higher risk in HD patients as compared with an age
adjusted normal population.®

Many attempts have been made to evaluate this kind of risk by analyzing clinical data using the
Cox model.!* Patients with Hodgkin’s lymphoma are treated not only for the primary tumour
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* but for its relapse as well. If therapy of the relapse influences the risk of leukaemia, the Cox
" model should be considered inappropriate, since the risks are no more proportional in this
setting.

Quite flexible as it is, a non-parametric method does not allow projection of the leukaemia risk
and other characteristics of the disease beyond the follow-up period. Since we were interested in
risk prediction, a parametric approach has been used to separate the contributions of the primary
treatment of HD and of the treatment of its relapse to the risk of leukaemia.

2. DATA AND PRELIMINARY REMARKS

In the subsequent analysis use was made of the International Database on Hodgkin’s Disease
(IDHD) collected at 15 cancer centres and 5 co-operating groups (see Appendix). The data
set includes records of about 13,000 newly diagnosed patients with HD treated between 1960
and 1987. Patients of all disease stages were included if older than 15 years. The majority
of patients were less than 60 years of age. A wide variety of treatment strategies ranges
from involved field irradiation in stage I to intensive combined modality treatment in stage IV.
Over 85 per cent of the chemotherapy regimens used were MOPP-like not containing
adriamycin. The records also contained follow-up data for each patient including date of
relapse, death, cause of death, second neoplasia, and type of neoplasia. With a total of
82,850 person-years at risk, 631 second neoplasias have been reported: 106 non-Hodgkin
lymphomas; 367 solid tumours, and 158 leukaemias (ICD 204-208). We restrict our attention to
the latter.

We consider two groups of patients with respect to the type of treatment. Patients assigned to
group 1 received radiotherapy alone (RT) as the primary treatment and MOPP-like chemother-
apy (CT) if relapsed. Patients assigned to group 2 received MOPP-like primary CT and some
chemotherapy (any type CT, denote by RCT) if relapsed. This classification contains 88 per cent
of the whole cohort.

The group of patients (12 per cent) excluded from analysis was quite heterogeneous: 382
patients were treated by a single-agent CT (mainly in the 1960s); 858 patients received some CT
which was not specified in the database (pooled into ‘unspecified’ or ‘other type’), and 284 patients
were treated by modern adriamycin containing regimens which are rumoured to be less leukae-
mogenic than MOPP. Since only a few leukaemia cases were observed in the excluded group, it is
not possible to estimate the leukaemogeneity of various CT in this group. We therefore restrict
ourselves to the subset group 1 + group 2 of the IDHD. -

In what follows the group number (j) will be shown in brackets. A summary of the data is given
in Table L. ’

A critical question is whether leukaemia is induced by CT and/or RT. A remark is in order that
a higher incidence of leukaemia in HD patients as compared with an adjusted general population
does not imply that leukaemias are induced by therapy. Possibly, those who develop HD might
have an increased spontaneous rate of leukaemia. To clarify the issue we have to distinguish
between spontaneous and induced leukaemia. From Table I we notice that the incidence of
leukaemia prior to HD relapse is 7 times higher in patients primarily treated by RT than among
those treated by MOPP CT. Although MOPP CT is more efficient in preventing relapses (20 per
cent after MOPP CT versus 33 per cent after RT), the 7 times difference in leukaemia incidence
prior to HD relapse is difficult to attribute just to a slightly better freedom from relapse
distribution in group 2.

Statist. Med., 17, 27-40 (1998) © 1998 John Wiley & Sons, Ltd.
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Table I. A summary of the International Database on Hodgkin's Disease (IDHD)

Group 1 Group 2 Total
RT+MOPP  MOOP +RCT
HD relapses 1777 (33%) 1223 (20%) 3000 (26%)
Leukaemia 43 (0:8%) 109 (1-8%) 152 (1:3%)
Leukaemia prior to relapse 13 (0-2%) 87 (1-4%) 100 (0-9%)
Leukaemia after relapse 30 (0-6%) 22 (0-4%) 52 (0-5%)
Total 5403 (100%) 6113 (100%) 11516 (100%)
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Figure 1. Overall survivor function estimates for leukaemia in the two groups of patients (censoring excluded): 1a, the
stratified life-table estimate in group I; 1b, the parametric estimate (12) in group 1; 2a, the stratified life-table estimate in
group 2; 2b, the parametric estimate (12) in group 2

o

The proportion of leukaemia observed in relapsed patients is about the same in both groups.
We note that HD relapses are treated by CT in both groups. However, the patients of the second
group have already received a CT treatment primarily. Therefore the potential of a CT treatment
in this group is to a great extent exhausted and an agressive (and heterogeneous) RCT is usually
given if relapsed, which still provides a worse prognosis than in the relapsed patients of the first
group. :

Everything falls into place if we assume that leukaemia is induced by therapy. In the first group
the majority of leukaemia cases are observed after MOPP CT of relapse, which fits the idea
suggested by radiobiologists that irradiation predominantly induces solid tumours. Since RCT is

© 1998 John Wiley & Sons, Ltd. Statist. Med., 17, 27-40 (1998)
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Figure 2. Treatment related net survivor functions: RT, smooth curve is estimated survivor function induced by
radiotherapy, step curve is the leukaemia-free Kaplan-Meier curve after RT based on all patients, HD relapses treated as
censoring; MOPP, smooth curve is estimated survivor function induced by MOPP-like primary or relapse chemotherapy,
unbroken step curve is the leukaemia-free curve after MOPP primary therapy based on all patients, HD relapses treated
as censoring, dashed curve is the leukaemia-free curve after MOPP treatment of a HD relapse based on relapsed patients,
time is measured from relapse; RCT, smooth curve is estimated survivor function induced by RCT, step curve is the
leukaemia-{ree curve after RCT based on relapsed patients, time in measured from relapse

more agressive than MOPP CT, it induces more leukaemias in the second group, which, however,
have less time to develop because of a poorer prognosis. The two effects counteract to give about
the same proportion of leukaemia in relapsed patients of the second group as observed after
MOPP CT of relapse in the first group.

Another point in discriminating between induced and spontaneous leukaemia comes about
from observing the S-shape and the plateau of leukaemia-free survivor curves (Figures 1 and 2).
Spontaneous leukaemia can be thought of as developing from primary lesions induced in an
individual according to some point process. The intensity of this process reflects the varying risk
factors in the environment as well as the individual-specific status.®” If all other causes of death
were removed, an individual would be expected to die from leukaemia, since the,spontaneous
formation of lesions never stops, and moreover its intensity is likely to increase with age.
Therefore, the ‘spontaneous’ leukaemia-free curve is expected to be of the proper type and most
likely with increasing hazard. Contrastingly, the ‘induced’ leukaemia-free curve is expected to
have a positive plateau for large ¢, since leukaemia is most likely to be induced only in a small
proportion of patients. The corresponding hazard function is not monotonic, because of the zero
hazard for long-term survivors.

Yet another complication lies in the fact that CT or RT not only induces tumour cells but also
kills them. Biologists suspect that the observed treatment effect results from a superposition of
both effects. If a patient is treated twice (if relapsed), a possibility that the relapse therapy kills
some of tumour cells induced by the primary treatment and thereby reduces its allied risk should
be taken into account. As will be evident in Section 7, it is difficult to estimate this effect reliably
even with such a large data set as IDHD.

Statist, Med., 17, 27-40 (1998) © 1998 John Wiley & Sons, Lid.
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3. BASIC MODEL

Given an inducing event at time ¢ = 0 the survivor function is supposed to be of the form

G(t) = exp{—H ()} (1)

where H(t) represents the cumulative hazard

{
H(t)=J h(x)dx
0
h(x) being the hazard function. Here and in what follows we understand that Q =1 - Q for any
function Q. ’
A survivor fraction implies an integrable hazard function and a bounded cumulative hazard
H(z) resulting in an improper G(t):

H@<9, limH@=0. @

Consequently, the cumulative hazard can be represented in the form H(t) = 8F(t), where F(t) is
the distribution function of some non-negative random variable (RV)

G(t) = exp{ —6F(1)}. ©)

We may consider a regression model based on (3) if § and/or F depends on covariates.

4, ‘DEEP’ MODELS AND THE PROPORTIONAL HAZARDS ASSUMPTION

Using statistics to analyse biological data calls for hypothetical constructs which would explain
the properties of the observed data. Such models are based on additional assumptions, which
although plausible cannot be verified by the data. The justification for the use of such models lies
not in an appeal to their ‘reality’ or otherwise but rather to the fact that these abstractions serve to
synthesize and summarize the properties of observed data and to generate further hypotheses for
which experimental evidence has to be collected. In this section we review some models which
‘explain’ expression (3) in a particular way and provide a link to interpretation of the analysis in
Section 7.

Caveat should be advised with such models, since they allow the experimenter to impose
preconvinced ideas on the raw data. Causal relations can only be established-through patient
active manipulations and the analysis of various data sets. a

4.1, Mixture models

There has been much earlier work to account for a survivor fraction (a probability of cure); see
references 8, 9 and 10, to name a few. Most of the cure models assume an unobserved
subpopulation of long-term survivors. To formulate it another way, an unobserved prognostic
factor is considered which would allow classification of individuals as long-term survivors. The
model then has the form of a mixture of distributions arising from integration with respect to the
distribution of the unobserved factor (a mixing variable). A class of such frailty models arises if we
consider a standard proportional hazards (PH) model and take the relative risk (unobserved
individual’s susceptibility) as a mixing variable'':'2

G(t) = E{exp(—vHy (1))}

© 1998 John Wiley & Sons, Ltd. Statist. Med., 17, 27-40 (1998)
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_ where Hj is the baseline cumulative hazard. A class of such models generated by a compound
Poisson distribution for v is considered by Aalen.® A particular case of the model by Aalen arises
if the compound Poisson distribution for v degenerates into a Poisson one. It is easy to show that
this particular model is matched to the expression (3) if § = Ev and F(t) = 1 — exp{—H,(t)}. In
the next subsection this model will be interpreted as a simple model of induced carcinogenesis
which serves to explain the presence of long-term survivors and the proportionality of hazards.

The mixture assumption is a strong one and should be used with caution as indicated in
reference 8. Evidently, the mixture interpretation of (3) fails if the chance of cure is an outcome of
an unknown stochastic process in time and the population is homogeneous at ¢ = 0.

Ed

4.2. A simple model of carcinogenesis

Assume that the tumour originates from initial lesions in a patient. Let the number of such lesions
v be Poisson distributed with parameter §. We model the observed tumour onset time U by
independent competing risks associated with the lesions’ progression
= min
U= min X, 4

where X, %f oo, and X; are the independent and identically distributed progression times. Let

F be the distribution of the progression time. The tumour-free survivor function of a particular
patient will be given by [1 — F(¢)]". Since v is unobservable we may repeat the frailty reasoning of
the previous subsection and get

E[1— F(@t)]" =exp{—0F(1)}.

See references 6, 13, 14 and 15 for more details.

4.3. Proportional hazards (PH) assumption

The fact that the PH model has gained widespread acceptance in the analysis of time to tumour
data calls for a biological explanation. The question that needs to be asked is why are the hazards
proportional? The above model endows the PH assumption with a clear meaning: while the
extent (and type) of HD therapy influences the number of induced lesions, the progression time
distribution F is shared by the treatment groups if all the lesions are of the same origin.

We may argue that the function F gives rise to a PH family unique to a particular disease. We
will be interested in testing the hypothesis that leukaemia induced by different HD ‘therapies are
of common origin. This does not imply the equality of the probabilities of leukaemia in different
groups, hence we cannot apply homogeneity testing. If we assume that the'_‘eﬁ‘ect of HD therapy
follows a PH model we could identify this hypothesis with an overall test for proportional
hazards.

If the probability of induced leukaemia is small (6 — 0) as estimated in Section 7, we will have
a test for homogeneity for patients with leukaemia. Indeed, given induced leukaemia, the
leukaemia-free survivor function G(t|leukaemia) has the form

exp{—08F(t)} — exp{—6}
1 —exp{—6} '

G(t|leukaemia) =

As' 6 — 0 we have G(t|leukaemia) — F(t).

Statist. Med., 17, 27-40 (1998) © 1998 John Wiley & Sons, Ltd.




A CURE MODEL WITH TIME-CHANGING RISK FACTOR 33

. Small 8 can be interpreted as a proportion (a probability) of induced cancer in a simple mixture
model

G(t) ~ 6F(t), for small 0

F being the time to tumour distribution among those who have induced cancer.

5. REGRESSION MODELS

The structure (3) allows us to consider covariates prognostic for § and for F separately. In
particular we may consider a regression model

G(t|2) = exp(~0(z) F(t|2) (5)

where z is a vector of covariates (we omit the index which would relate z to a particular patient).

If F were independent of z, the model (5) would be a PH model. This formulation calls for
a likelihood which would allow estimation of the cure rates without having to estimate the other
nuisance parameters (F) jointly. If the censoring is of type I, the probability of cure can be simply
estimated by the proportion of censored observations from a homogeneous sample. Within the
framework of the PH model under type I censoring, a marginal likelihood has been suggested
which allows estimation of the cure rates,'® if covariate information is available. It is noteworthy
that the rank’s marginal likelihood no longer coincides with the Cox’s partial likelihood if cure is
a possibility. It is shown in reference 16 that the marginal likelihood outperforms the partial one
and is practically as efficient as the parametric likelihood with small samples.

A parametric model of type (5) was considered in reference 17 to describe breast cancer
recurrence. An advantage of the model (5) is that it allows for a classification of covariates as
exerting a predominant influence on 6, on F, or on both. For example, the CT/RT dose is
expected to influence the extent of induction §, but not the leukaemia baseline function F, which is
supposed to be unique to the disease.

We return to the example of Section 2. The treatment given to a patient will be coded by a pair
(i,j) as in Table II.

Consider a regression model for leukaemia induced by the primary therapy. Proceeding from
the predictor in the exponential form 8(z) = exp{Bz} and assigning an indicator variable for each
treatment option in Table IT we get for a given patient with time to relapse Ty

0(z(t) = exp(B5” — B I(t — Tw) : (6)
where 8 is a regression coefficient of the covariate as coded in Table II, and [ is'an indicator
function ' '

I, x=0,
)= {0, x <0,

The PH assumption related to primary treatment (i = 0) may not hold between treatment groups.
Therefore a stratified model is considered by letting F depend on covariates, so that for a patient
in the treatment group j we have F(t{z) = F{’(t). The net hazard function h, related to primary
therapy acquires the form of a PH model with a time-dependent ancillary covariate'® within
a treatment group

050, 1< Tw

ho(t|z) = {gc(,j)q(lf)f(()f’(r), t =2 Tg X

© 1998 John Wiley & Sons, Ltd. Statist. Med., 17, 27-40 (1998)
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Table II. Coding of treatment (i, j), i=0,1; j=1,2

Group 1 Group 2
Primary treatment 0, 1) 0,2)
Relapse treatment (LD 1,2)

where f§ is the density corresponding to F{; 6% = e ™% describes the initial effect of primary
treatment; and q{” = e ™" < 1 describes the post-relapse effect of primary treatment.

Model (7) is commonly used to describe survival in a population subject to an acute change of
hazard occurring at a random time point (see references 19 and 20 for an example on bone
marrow transplantation).

To understand the qualitative meaning of coefficients 8§ and ¢, a mechanistic interpretation
might be of help. Let us recall the model (4) and assume that a leukaemia lesion (k) latent at time
Ty of HD relapse (X > Tg)is cured by the relapse therapy with a probability § = 1 — q. It is easy
to show that the above model yields (7), where £ is the distribution density of the progression
time of a lesion induced by primary therapy in group j. We thus arrive at the mechanistic
interpretation of (7) with:

8¢ = the mean number of lesions induced by the primary therapy in the treatment group
J = the probability to induce leukaemia by the primary therapy (if smail);
q\" = the probability that a latent lesion (latent leukaemia) survives the therapy of HD relapse.

Similarly, the net hazard function h, related to leukaemia induction by the relapse therapy is
modelled by ‘
0, t< Ty
itz = {Hif’fif’(z ~To 2Tk ®

Assume that leukaemia risks associated with the primary and the relapse therapies are
independent given the covariates. Combining (7) and (8) we get the competing risks model

h(t|z) = ho(t|z) + hy(t]2). ®)

It might be well to point out that because of the shift T'g in the function f{” the mogel (9) cannot
be made a PH one by pooling the baseline functions across strata F?=F, i=0,1;j=1,2.

The weak model (9) can be used as a starting point for model seleﬁﬁon and testing the
goodness-of-fit. Two hypotheses seem reasonable in this respect: '

I. The baseline functions of induced leukaemia do not depend on when and by which therapy
it is induced: F) = F, i =0, 1;j = 1, 2. This would suggest the common origin of induced
leukaemia under the assumption that F in unique to the disease.

II. The probability to induce leukaemia by MOPP CT is the same, whether used as primary or
relapse treatment:

RT: 9((,1) = GRT
MOPP: 9(()2) = 651) = GMOPP
RCT: 952) = GRCI"

Statist. Med., 17, 27-40 (1998) © 1998 John Wiley & Sons, Ltd.
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6. ESTIMATION PROCEDURE

To provide a parametric representation of (¢|z), we need to specify the form of the functions f o
For mathematical convenience and because of its flexibility we choose the I-family

bll
T(a)

and relate the parameters g, b to patient’s covariates to get al”, b, i =0, 1; j = 1, 2. We have
checked by simulations that the I'-distribution fits well in the framework of carcinogenesis
modelling.?! The shape parameter a and scale parameter b are related to the mean, M, and the
standard deviation, o, of the progression time in the following way: M = alb, g = \/E/b. Because
of the clear meaning we will use M and ¢ instead of a and b to identify the function f.

Under non-informative censoring the likelihood can be written as

a—le-bl

)=

]
i, all patients JO i, uncensored
where z, is the covariate (treatment history up to ;) of the ith patient and {t:} is the sample of times
to leukaemia or last news.
To obtain the ML estimates the likelihood (10) is maximized with respect to the unknown
parameters
max ¢ (11)

e"J)‘ ql'h' a;il' b}‘"
8720, 0<q¥’<1, a¥>0, bW>0, i=01j=12

To maximize the likelihood, we use the random search maximization described in reference 15 to
get the initial approximation in the domain of global maximum and the Powell algorithm?? to get
the final solution.

It can be easily imagined that model (9) would be overfitted should all the variables in (11) be
included. We use a backward exclusion procedure. This is organized by testing meaningful
hypotheses on the linkage between the parameters, the hypotheses I and II of the previous section
above all.

By solving (11) we get the ML estimate for the survivor function G(t|z) = exp{— [ h(u|z) du}
conditional on the treatment history z. To indicate explicitly the dependence of G(t|z) on the time
to relapse Ty and on the treatment group j we will write G(¢|j, Tx). Denote GY)(t) the population
survivor function in the treatment group j. It is of immediate interest to estimate GY'(z), as far as
predictions of the overall incidence of secondary cancer by treatment group are concerned. Let
RU(t) be the distribution of the time to HD relapse in the treatment group j. Then

GUt) = J' G(tlj, t) dRY(tg).
We estimate R' by the life-table method with secondary cancers considered as censoring events
with respect to the time to HD relapse. The sought-for overall survivor function GY(t) can then

be estimated by

GO = i G(tlj, ) ARV (z) + G(tlj, 0)R(z,) (12)
k=1

© 1998 John Wiley & Sons, Ltd. Statist. Med., 17, 27-40 (1998)
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- where 7, k =1, ..., n are the step-points of the life-table estimate; ARV (r,) = Rz, _ ) — RY(z,).
It can be shown that the predicted proportion of induced secondary cancers (censoring removed)
by treatment group is given by

GY(c0) = 1 — exp(—64") {R‘”(rn) +exp(—69") 3 ARY(z})exp [ng’q(l”Fo(rk)j}. (13)
k=1

To verify the parametric estimate GY)(z), it will be compared with the non-parametric one. To do
that we replace G(z|j, 7} in (12) by a life table leukaemia-free survivor curve computed for patients
of group j who have HD relapse in the interval [7,_,, 7)) {or who do not relapse at all for
&(clj, ). .

To get an impression of identifiability we may consider an approximate procedure. In doing so,
consider HD relapses as censoring events with respect to leukaemia. In this setting only the
information on leukaemia induced by primary therapy is available, and a simple model like (3)
can be fitted in each group to estimate the parameters related to primary therapy. After that,
a population of relapsed patients may be considered with the conditional residual risk of primary
therapy (given no leukaemia prior to relapse) being replaced by its estimate obtained at the
previous step. From the sample of relapsed patients we can estimate the risk of relapse therapy
and q. If g = 0 as estimated in Section 7 (leukaemia induced by primary therapy is eradicated by
the relapse therapy), the approximate solution would coincide with the result of ML estimation.

It is clear that the parameters related to the relapse treatment may interact with ¢ ‘explaining’
the incidence of leukaemia after HD relapse by the influence of the relapse therapy or by the
residual effect of primary therapy (if ¢ > 0).

7. COMPUTATIONS

Proceeding from the general model (9) we get the estimates as given in Table III. Observing the
similarities in parameter values related to cumulative hazards F?, j=1,2, i =0, 1 one would
suspect that F{” = F,j = 1,2,i =0, 1 (hypothesis I). The likelihood ratio test does not reject the
hypothesis (p = 0-65). Next, the values of 8" and 8¢’ are very similar (see Table ITI, estimates
under hypothesis I) suggesting a natural further hypothesis that the extent of leukaemia induction
by MOPP CT is therapy-specific and does not depend on whether MOPP is used as primary or
relapse treatment: 85" = 05 = fyopp (hypothesis IT). The hypothesis was accepted (p = 0-69).
Compared with the non-parametric estimate, the model fits well (Figures 1 and 2).

This step appears to be the final decision, and the hypothesis Gyopp = GRcr"was_rejectcd
(p = 0-006). We are at the point to draw some conclusions: SR

(a) The baseline hazards related to inducing events are the same, suggesting that induced
leukaemias are of the same origin irrespective of the therapy under the assumption that F is
unique to the disease. The median duration of leukaemia latency was estimated to be
6 years (mean = 7 years).

(b) RT-associated leukaemia risk is very small compared with that of CT (see also Figures
2 and 3). The probability to induce leukaemia by MOPP CT is the same, regardless
whether used as primary or relapse treatment. Perhaps this property can be generalized to
other types of CT/RT.

(c) RCT induces twice as many leukaemia as the MOPP CT (1 — e % = Byopp = Orer/2), see
also Figure 2.

Statist. Med., 17, 27-40 (1998) © 1998 John Wiley & Sons, Ltd.
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Figure 3. Treatment related net hazard functions: RT - hazard function induced by radiotherapy, MOPP - hazard
function induced by MOPP-like chemotherapy, RCT - hazard function induced by relapse treatment after MOPP
primary treatment (time (months) is measured from the end of therapy)

These conclusions should be treated with caution as a suggestion rather than as strong evidence.
In addition to the discussion in Section 4 it should be stressed that the large p-values in the above
computations indicate solely that the hypotheses I and II are compatible with the data, perhaps
due to small numbers of leukaemia cases, particularly of those related to RT. The model also
suggests that latent leukaemia is eradicated by the relapse therapy. This finding is extreme. To
find out if the conclusions are stable with respect to a misspecified g we forced the reverse
assumption ¢’ = 1, j = 1, 2. The hypotheses

[1] F9=F, j=1,2, i=0,1(p = 047)
[2] 6 = 62 = 6P = §; (p = 098)

were accepted resulting in the following estimates:

¢ (months) M (months) - '9cr

60 (53, 69) 91 (82,98) 0-0054 (0-0029, 0-0087) 0-038 (0-030, 0-046)

Comparing these estimates with Table III we notice that all parameters remain the same except
for Brcr which was reduced to the fyopp level, and the conclusions (a) and (b) are still valid. If the
likelihood ratio on testing the hypothesis ¢ = 1, j = 1,2 were y*-distributed we would get
a non-significant result (p = 0-20).

In view of the above we have to admit that the estimate of q is perhaps unreliable even with
such a large data set as IDHD. The conclusion (c) should be relaxed: RCT induces at least as
many leukaemia as the MOPP CT.

Statist. Med., 17, 27-40 (1998) © 1998 John Wiley & Sons, Ltd.
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The overall fraction of induced leukaemia was found (using (13)) to be 0-018 in group 1 and
0-049 in group 2. If a 10-times less leukaemogenic CT was available as the primary therapy in
group 2, it would reduce the predicted leukaemia incidence only by a factor of 2. Since such an
improvement on the aspect is unlikely, only a moderate success in reducing this severe long-term
toxicity is to be expected from modern CT modalities, particularly in patients with advanced
disease.

APPENDIX: LIST OF STUDY CENTRES AND PRINCIPAL INVESTIGATORS
INVOLVED IN THE IDHD

British National Lymphoma Investigation (BNLI), London, U.X.: M. H. Bennett, B. W. Han-
cock, K. A. MacLennan, B. Vaughan Hudson, G. Vaughan Hudson; EORTC Lymphoma
Cooperative Group: P. Carde, J. M. Cosset, M. Hayat, M. Henry-Amar, J. H. Meerwaldt, R.
Somers, J. Thomas; Stanford University Medical Center, U.S.A.: R. S. Cox, R. T. Hoppe; Princess
Margaret Hospital, Toronto, Canada: D. E. Begrsagel, G. DeBoer, M. Gospodarowicz, S.
Sutcliffe; Southwest Oncology Group (SWOG), US.A.: C. A. Coltman, S. J. Dahlberg; University
of Texas M.D. Anderson Cancer Center, Houston, U.S.A.: D. O. Dixon, L. M. Fuller, F. B.
Hagemeister; Royal Marsden Hospital, London, U.K.: S. Ashley, A. Horwich; St Bartholomew’s
Hospital, London, UK.: W. Gregory, T. A. Lister; Grupo Argentino de Tratamiento de la
Leucemia Aguda (GATLA), Argentina: S. Pavlovsky, M. T. Santarelli: Universita di Pavia, Italy:
P. G. Gobbi; Joint Center for Radiation Therapy, Boston, U.S.A: N. C. Coleman, P. Mauch;
Finsen Institute, Copenhagen, Denmark: N. L. Nissen, L. Specht; Fondation Bergonié, Bordeaux,
France: F. Bonichon, H. Eghbali, B. Hoerni; German Hodgkin Study Group, Germany: V. Diehl,
D. Hasenclever, M. Loeffler, M. Pfreudschuh:; Groupe Pierre et Marie Curie, France: H. Eghbali,
A. Najman, R. Zittoun; Christic Hospital & Holt Radium Institute, Manchester, U.K.:
D. Crowther, R. Swindell; The Institute of Oncology, Ljubljana, Yougoslavia: V. Pompe Kirn,
M. Vovk; University of Minnesota Health Science Center, Minneapolis, U.S.A.: D. M. Aeppli,
C.K. K. Lee, S. H. Levitt; University of Nebraska, Omaha, U.S.A.: J. Anderson, J. O. Armitage;
Yale University, New Haven, US.A.: S. Dowling, C. S. Portlock.
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