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Abstract: In the classical multiple regression model one proceeds on the as-
sumption that the data are complete. In practical applications however, because
of the restriction to complete cases, a situation may occur where only less than
half of all cases can be considered. This may lead to a considerable bias in the
results. One possible solution has been offered by the Expectation-Maximization
algorithm, known as EM algorithm (Dempster et al., 1977), however, this method
may lead to local maxima of the likelihood function and therefore I cannot rec-
ommend it. At present Markov Chain Monte Carlo (MCMC) methods seem most
suitable for consideration of missing covariates. The application of the suggested
MCMC methods is demonstrated by using the WinBUGS software (Spiegelhalter
et al., 1998) on a medical data set.
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1 Introduction

One aim of multiple regression analysis is the determination of those co-
variates which have a significant influence on the response or which lead
to a good model fitting by stepwise methods (forward, backward, or both).
As a rule only cases with complete set of covariates given can be used for
computations in multiple regression models. Therefore a considerable part
of information available may not be included if any covariate is missing.
Some software (e.g. SPSS) offer the possibility to compute the correlation
coefficients used in regression analysis from all pairs of values available.
So the cases with missing covariates will be included into the analysis at
least partially. If these computations, however, result in a very different
model (as in the example below) a more detailed handling of missing data
should be performed. For such a problem the EM algorithm (Dempster et
al., 1977; McLachlan and Krishnan, 1997) is suitable, however, this method
may lead to local maxima of the likelihood function and therefore I cannot
recommend it. Alternatively MCMC methods can be used which are based
on Bayesian statistics. In this method the unknown parameters and the
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missing values get non-informative a priori distributions, namely N(0, 10)
for location parameters and Gamma(10~3,1073 ) for each precision, which
is the reciprocal of variance. Using Bayes’ theorem the posterior density is

determined by 0)p(zl6)
_ p(0)p(z|d
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The posterior density is proportional to prior times likelihood. In case
of non-informative prior densities the posterior density results in similar
estimations as likelihood function does. The computation of the normal-
izing constant above is rather difficult because of the necessity of high-
dimensional numeric integration. This can be avoided by using the MCMC
methods in order to sample without knowing the normalizing constant. In
this case the missing values are treated as additional parameters which
get non-informative prior density and they are estimated, too. By apply-
ing this method cases with missing covariates can also be included. The
WinBUGS software ( Spiegelhalter et al., 1998) was used for performing
MCMC methods.

2 Markov Chain Monte Carlo Methods

The most important MCMC method is the algorithm of Metropolis and
Hastings ( Metropolis et al., 1953) with the Gibbs sampler (Gelfand and
Smith, 1990) as special case. The Gibbs sampler can be used if it is possible
to sample from the conditional densities of each parameter given all other
parameters and the data. These full conditional densities will be explained
in the following presentation. By using WinBUGS these densities need
not be specified explicitly because WinBUGS performs the derivation. The
Gibbs sampler cyclically draws random values from these one-dimensional
conditional distributions which as a rule are known conjugated distributions
from which samples can be drawn. The Gibbs Sampler generates random
points 61, 62, ... (1st index (before comma) index of Markov chain, 2nd
index (after comma) component of vector 6 ). The starting point 6y, =
(80.1,---,80,p) should be given arbitrarily. 8,41, results from 6, by the
following formulas

9m+1,1 is drawn randomly from fl (91|6’m,2, e ,gm’p)
Om+1,2 is drawn randomly from  f2(62|0m+1,1,0m,3,-- -, 0m,p)

Om+1p is drawn randomly from  fp(0p|0m+1,1,-- s Omt1,p-1)

The Gibbs sampler converges (O’Hagen, 1996) asymptotically under reg-
ularity conditions, if the chain is irreducible and aperiodic, against the
posterior density which was searched for. Therefore after reaching station-
ary distribution, the Gibbs Sampler results in an independent sample of the
normalized joint distribution f(6); i.e. of the distribution of the parameters
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given the data. This sample can be used as any random sample. The sample
means of the parameters are estimators of the corresponding expectations.
The variance of the parameters can be estimated from the same sample.
The same is valid for any function h(). From the sample one can get in
addition the marginal densities, for example with kernel estimators.

3 Example: Prognostic Factors Influencing the
Clinical Course of Recent Onset Rheumatoid

Arthritis

The aim of a prospective study was to evaluate the usefulness of clinical
parameters, laboratory tests and immunogenetic markers as predictors of
an erosive course of joint disease early in the course of rheumatoid arthri-
tis (RA). Patients with persistent oligio or polyarthritis over a period of
six weeks and a history of disease of less than 2 years were enrolled in
the study. Morning stiffness, number of swollen joints and joint tenderness
score (Ritchie index: RI), standard lab tests (ESR, CRP, fibrinogen and
quantitative determination of IgM and IgA rheumatoid factors: RfIgM and
RfIgA) and flowcytometric markers of lymphocyte activation including the
ratio of CD4/CD8 positive T cells (CD4.8) were documented 6-monthly
initially, and every year later in the study. HLA-DRBI-alleles and DR4
subtypes (DR4epi) were determined by hybridisation of PCR. products to
sequence-specific oligonucleotypes. Hand and feet X-rays were taken yearly
and judged according to Larsen’s method. Larsen Indices scored by the
patients at study entry and subsequently after one and two years of obser-
vation were available for 88 patients, while 48 patients were followed for
four years.

As response for statistic modelling, changes in the Larsen score in the first
and second year and the averaged yearly change during the third and fourth
year of observation (y) were used. Since the goal of the analysis was the
identification of prognostic parameters, initial values of the covariates doc-
umented at study entry (denoted with 1 at the end of the variable name) as
well as the values obtained after 6 months of observation and therapy (de-
noted with 2 at the end of the variable name) were used. The appropriated
model for the data presented here is, therefore, a mixed effect regression
model for repeated measurements. After initial analysis, a model with ran-
dom intercept and compound symmetry was chosen to describe the course
of the disease. For statistical analysis, the S-Plus 4.5 software with the
functions Ime and lm was used. Since serial correlation between different
time points was rather low (r = —0.04), separate observations could also be
treated as independent, which leads to a multiple linear regression. There-
fore these data can serve as an example here. The backward and forward
stepwise solution of this regression results in an exactly identical model
(REG1)(with 95% confidence intervals for the parameters in parentheses):
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v = 3.73(1.20, 6.25)* DR4epi - 3.17(-5.91, -0.43)* Time01
+ 0.041 (0.013, 0.069) * RfIgA2 + 2.15(-0.17, 4.46) * CD4.8.1
- 3.83(-6.50, -1.16) * CD4.8.2 + 7.13(3.46, 10.81)

Preceding investigations using the time as factor showed that it is sufficient
to distinguish between the first two years (Time01=0) and the following
two years (Time01=1). Regression analysis with computation of correlation
coefficients in pairs results in (REG2):

vy = 3.29(0.78, 5.81) * DR4epi - 2.89(-5.45, -0.34) * Time01
- 3.00(-6.31, 0.31) * Sex + 0.014(0.004, 0.024) * RflgA1
- 2.00(-3.82, -0.18) * CD4.8.2 + 10.69(6.27, 15.11)

Male patients are coded as Sex=0 and female ones as Sex=1. An analysis
without covariates CD4.8 containing more then 20 missing values, results
for both kinds of computation of correlation coefficients in (REG3):

y = 3.14(0.87, 5.42) * DRdepi - 3.08(-5.73, -0.43) * Time0l
- 2.635(-5.517, 0.247) * Sex + 0.012(0.003, 0.022) * RflgAl
+ 0.202(-0.015, 0.418) * RI2 + 6.02(2.84, 9.20)

By using WinBUGS the missing covariates get a non-informative prior
density and are also estimated, with the effect that all 223 time points
can be included into the analysis. After the input of the model and the
data WinBUGS independently selects the update methods. Subsequently
the initial values for the parameters must be specified by the user or by
WinBUGS. After a ”burn in” of at least 10 000 iterations the Markov chain
may considered as converging in all computed examples. This was verified
by the examination of the iteration sequence and by using the program
CODA (see Best et al., 1995). From the drawn sample of size 10 000 the
medians and the 95% credible intervals were estimated. The results show
that a reduction of variables is necessary which leads to the model BUGS1

step by step:

y = 3.29(0.95, 5.50) * DRdepi - 2.98(-5.57, -0.38) * Time01
- 2.92(-5.77, -0.07) * Sex + 0.012(0.003, 0.021) * RfIgA1l
+ 7.24(4.35, 10.09) :

In BUGS1 the response y, the yearly increase in the Larsen score, was
modelled as normally distributed with mean mu and precision tau. The
use of a normal distribution for y corresponds to an approximately squared
adjustment of the residuals. Because of the large deviations in the residuals
of y it would be better to use an adjustment in absolute values. Maximum
likelihood estimates for the double exponential distribution are essentially
equivalent to minimising the sum of absolute deviations, see Birkes and
Dodge (1993). Therefore the double exponential distribution with the den-
sity (7/2)e~"¥=#l is also used for y. The reduction of variables leads to
the model BUGS2,
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y = 3.55(2.04, 5.31) * DRAepi - 2.33(-4.22, -0.69) * Sex
+ 0.014(0.008, 0.023) * RfIgA1 + 2.48(0.86, 4.34)
which differs from BUGS1 only in the fact, that the time is not in the
model. It seems that BUGS2 is fitted best to the data and therefore this
model is the model of choice. The presence of a RA associated DR4 allele
resulted in an additional averaged yearly increase of 3.6 points in the Larsen
score. Men have a by 2.3 points higher yearly increase in the Larsen score
as compared to women. In addition, RF-IgA measured at study entry had
a significant impact of yearly increase on the Larsen score. It is concluded
that the developed model describes the course of the early phase of RA. It
can reliably be used for the first 5 years. For the later course no data are
available, however, linear models seem not suitable because the Larsen score
is limited. Therefore saturation curves should be taken into consideration.
This paper demonstrates the superiority of MCMC methods in modelling
complex data structures with missing values.
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