Biometrical Journal 42 (2000) 3, 349-362

Online Calculation of Efficient Designs for Multi-Factor Models

HOLGER DETTE

Faculty and Institute for Mathematics
Ruhr-University Bochum
Germany

INGO ROEDER

Institute for Medical Informatics, Statistics und Epidemiology
University Leipzig

Germany

Summary

A class of “incomplete” multivariate polynomial regression models on the g-cube is considered. A
simple algorithm for the determination of D-optimal product designs is developed and illustrated by
specific examples. The methods are implemented on an IBM compatible PC under MS-DOS and pro-
vide an effective method for the numerical solution of an optimal design problem, which was unsolved
in nearly all cases of practical interest.
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1. Introduction

The construction of optimal experimental designs is of fundamental importance in
response surface analysis, especially when the functional form of the relationship
between the response and explanatory variables is not completely known. Assume
that there is a one dimensional response, say Y, which depends on a g-dimen-
sional explanatory variable x = (xi, ..., x,). It is common practice to approximate
this response surface relationship z = y(x1, ..., X,) by a multivariate polynomial
of degree m, say
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and then fit the standard polynomial model using least squares methods. The poly-
nomial expression (1) can be thought as a Taylor’s series expansion of the “true”
underlying function truncated after terms of mth order. In practice an increasing
degree m usually improves the approximation of the unknown regression function
y by the polynomial model f and the smaller the region of approximation needs to
be made the better is this approximation. Usually, lower order polynomials are
used for these approximation in order to avoid models with a large number of
parameters.

Various properties of the resulting fitted models have been investigated, espe-
cially those properties which are influenced by the choice of an experimental de-
sign. The most popular optimality criterion for the choice of a design is D-opti-
mality which minimizes the volume of the confidence ellipsoid for the unknown
parameters of the regression. Properties of designs for the multivariate polynomial
regression (1) and product type multivariate models have been studied intensively
in the literature [see e.g. KONO, 1962; FARELL, KIEFER, and WALBRAN, 1967; LM
and STUDDEN, 1988: RaFAriLowicz and Myszka, 1988, 1992; and WONG, 1994].
Most authors assume that all regression functions

a q
11 x; with > hi<m (2)
J=1 J=1
are present in the model (1). However, in many cases of practical interest it can be
justified that some of the multiple monomials do not appear in the regression. For
example, it is possible that some of the interactions or some of the highest terms
can be neglected in the response surface relationship (1) [see UPPERMANN (1993)].
DETTE and RODER (1996) studied “incomplete” multivariate polynomial regression
models and provided a characterization of D-optimal product designs for a large
class of models of this type. It is the purpose of the present paper to develop an
efficient algorithm, which is based on these results and allows an “online” calula-
tion of D-optimal product designs on the g-dimensional cube.

Section 2 introduces and illustrates the multivariate “incomplete” polynomial
regression model while Section 3 provides some of the theoretical background
which is needed in our algorithm for the calculation of the D-optimal product
designs. Section 4 describes the algorithm and its implementation on an IBM
compatible PC under MS-DOS. Finally, the impact of our method in applied re-
gression analysis is illustrated in a concrete example in Section 5.

2. “Incomplete” Multivariate Polynomial Regression

Our paper is motivated by the observation that there are many cases where the
experimenter already knows that not necessarily all monomials of the form (2)
appear in the multivariate polynomial regression model (1). In order to fix ideas
we start with a small example.
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Example 2.1: Consider a second order response surface relationship in three
variables, i.e.

f(x) = ap + a1x; + dpxp + 03X3 + 04X1X2 +
OsX1X3 + QleXoX3 + owx% + agx% + a9x§ (3)

In practice an experimenter would always try to reduce the number of para-
meters in this model. Usually this is done by performing a sequence of F-tests
in order to check which of the parameters are needed in the model. In contrast
to this approach we consider here the case where it is already clear that the
above model is “incomplete” before any experiments have been conducted. For
example, by physical considerations, it could be argued that there is no interac-
tion between x; and x3 and x; and x3. Morover, assume that the response func-
tion is increasing with x, and x3 and therefore can not be quadratic in these
variables. In this case the model (3) reduces to the “incomplete” second order
regression

F(x) = ap + apx; + 02Xz + 03X3 + QX1 X2 + an% . (4)

In order to construct D-optimal designs for general “incomplete” models of the
form (4) we need a reformulation of the response surface model (1) which allows
to omit any of the regression functions in (2). To this end let for

q
hi,...,hy €{0, ..., m} with 3 h;<m
=1
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0 else

denote given numbers with values O or 1 and define a linear model by

gx)= 2 In,.n (ahl,m,hq ﬁle’> . (6)
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The multivariate polynomial regression (6) has
Nymz:= 2.  ZTh,hy

. hge{0, ... m}

S e

parameters, and the indicator functions Zp, . x, specify the monomials defined by
(2) which appear in the “incomplete” model (6).

Note that the “complete” multivariate regression of degree m is obtained by
putting all indicator functions Zy,,...n, = L. As a further illustration recall the
“incomplete” second order model (4) of Example 2.1 which emerges from (6) by
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the special choice m =2, g = 3 and

Zo,0,0 = Z1,0,0 =Zo,1,0 = Zo,0,1 = Z1,1,0 =Z2,00 =1,

Zyr01=Z0,1,1 =Zo,2,0 =Z0,02=0.
Throughout this paper we will restrict ourselves to “incomplete” multivariate mod-
els which satisfy the following basic assumption

it Zp,.m, =1, then Iy =1 for every set (7)

(Hys...,H,) suchthat h;<h; and h and K

have the same parity for j=1, ..., g,
which turns out to be crucial for our approach. Roughly speaking, it means that if
the experimenter deletes a regression function, say sz’ (sz“l) all terms which con-
tain even (odd) powers of x; larger or equal than 2i (2i — 1) have also to be
deleted. From a practical point of view this seems to be reasonable and therefore

the basic assumption is satisfied for many response surface models used in applied
regression analysis. The following examples also demonstrate that it is easy to

check in a given regression.

Example 2.2: The basic assumption (7) is satisfied in the second ovder response
relationship (4) of Example 2.1. Similarly, in the third order “incomplete” model

Qg + O1x] + QoXp + O£3x% -+ O(4)C§ -+ (lsx%XZ (8)
assumption (7) can readily be verified by noting that the quantities Ty, p, in our
general “incomplete” model (6) are given by

Zoo=Zi0=Zo1=220=230=12:1=1,

Zor=212=203=111=0.

A rather large class of models satisfying (7) is the class of odd or even (multi-
variate) polynomials. An example where our basic assumption (7) is not fulfilled
is the third order one dimensional regression

g(x) = oy + ax? + asxs .

If we would require this model to satisfy (7) we would have to add the term x, in
the regression.

3. D-optimal Designs for “Incomplete” Multivariate Polynomials

Assume that the experimenter observes n independent, normally distributed re-
sponses, say Y = (Y),...,Y,) with common variance 0° >0 and mean
EY]=g(xV),j=1,..., n, where g(x) is the “incomplete” mth degree polyno-
mial defined in (6) and the explanatory variable varies in the g-dimensional cube.
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For the sake of simplicity we restrict ourselves at this point to the unit cube
[—1,1]%. The case of a general symmetric cube does not cause any further difficul-
ties and is briefly discussed at the end of this section. If XTX denotes the design
matrix for this model, then the inverse of the volume of the confidence ellipsoid
for the vector of parameters is proportional to

X7X| ©)

and consequently a “good” design will make this determinant as large as possible.
Designs which maximize |X TX| are called D-optimal.

This paper deals with approximate designs [see KIEFER (1974)] which means
that a design is treated as a probability measure on the cube [~1, 1]7 with finite
support. Thus an approximate design 1} requires the obserations to be taken at the
support points of the probability measure, say x{!), ..., x%), and in proportion to
the masses 1, ..., 1), at the corresponding support points. In practice, approxi-
mate designs have to be implemented by an appropriate rounding procedure [see
e.g. KIEFER (1974)]. For a design 1 on [—1, 1}* we define

M= | sl gl dn(x) = gmg<x“>>g<x“>f (10)

~1,11
as the information matrix of 1 where the vector of regression functions g(x) in the

a q

model (6) consists of the N,z monomials Hx;l’ satisfying > h; <m and
=1 =1

Ih,,...n, = 1. The matrix M(n) is the continuous analogue of the design matrix

X7X, the quantity corresponding to the determinant in (9) is given by

M ()]
and an approximate D-optimal design maximizes this determinant.

Example 3.1: As an illustration for the above terminology consider the model

(4) of Example 2.1 and a design which takes n; observation at the points
k

x) = (xY), xg), xg)), j=1, ...,k S =n.Ifn, denotes the design with masses
N =1
nj/n at the points xU),j=1, ..., k, then it is easy to see that the design matrix in
the “incomplete” second order regression (4) can be represented as
X’X =n-M(n,) (11)

where the information matrix M(1) is defined by (10) and the vector of regression
functions is given by h(x) = (1, x1, X2, X3, X1X2, x%)T. Note that the relation (11)
is exact whenever the masses of 1, are multiples of 1 /n. For example, if k=5,
n,(x9) =1/5,j=1, ..., 5 and 100 observations can be iaken, the experimenter
observes 20 times at each point. However, if the number of observations is 10}, a
rounding procedure has to be applied. This could produce a design with 21 obser-
vations at xV and 20 observations at each of the remaing four points. In this
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case the equality (11) would only hold approximately, which explains the notation
“approximate” design.

D-optimal designs for the “complete” polynomial regression (1) [or equivalently
for model (6) with Zy, ., =1 for all Ay, ..., hy] have been determined numeri-
cally by FareLL, et al. (1967) (m=3,4=2), Lim and STUDDEN (1988)
(m=3,4,5 4g=2; m=gq=23) or GAFFKE and HEILIGERS (1995). Even in these
models the numerical effort is considerable and usually the optimization problems
are reduced to lower dimensional maximization problems by using standard invar-
iance arguments. For “incomplete” multivariate regression models these techniques
can not be applied any longer and the numerical difficulties increase rapidly. For
this reason DETTE and RODER (1996) proposed to determine optimal designs in the
subclass of all product designs on the g-dimensional cube. They demonstrated that
the D-optimal product designs provide very efficient solutions for the design pro-
blem in the “complete” and “incomplete multivariate polynomial regression mod-
el. In the cases where the D-optimal designs in the class of all designs are known,
the loss of efficiency by using D-optimal product designs is usually between
1% — 3% [see Lim and STUDDEN (1988) or DETTE and RODER (1996)].

To be precise let 1 =75; x --- x§, denote a product design on the g-cube
[—1, 1]7 (which means that E; is a probability measure with finite support on the
interval [—1, 1], j=1, ..., ¢), and define =, as the set of all product designs on
[—1,1]?. A D-optimal product design for the “incomplete” polynomial regression
(6) is a solution of the problem

maximize |M(n)| withrespectto m€Z,. (12)

In order to describe the D-optimal product design for the “incomplete” multivari-
ate regression explicitly we have to characterize the components of the optimal
product measure. These can easily be described in terms of their canonical mo-
ments. For a precise definition of canonical moments we refer to the work of
STUDDEN (1980, 1982a, b) and to the monograph of DETTE and STUDDEN (1997).
For the sake of simplicity we present here a rather heuristic description of these
quantities which will be sufficient in order to explain our algorithm.

To this end let & denote a probability measure on the interval [—1, 1] with

1
moments ¢; = [ x'dg (x), i=1,2,... It is well known that § is determined by
-1
its moments. The sequence (ci, ¢z, ...) can be mapped in a one to one manner
onto a sequence (py, pa, --..) whose elements vary in the interval [0, 1] and are
called canonical moments of the measure & Because the design & is determined
by (c1, c2, ...) it follows that it is also determined by its sequence of canonical

moments, symbolically
Ee—cCl,C ... P, P2y o

If i is the first index for which p; € {0, 1}, then the sequence of canonical mo-
ments terminates at p; and the design & is supported at a finite number of points.
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The support points of the corresponding measure can be obtained by determining
the roots of a certain polynomial. The corresponding masses can be computed by
evaluating a second polynomial at these roots (see DETTE and RODER (1996), The-
orem A.1 for more details). Both polynomials can be calculated recursively. In
this sense a design on the interval [—1, 1] corresponding to a terminating se-
quence of canonical moments has finite support and can quickly be identified by
evaluating two polynomials.

Similarly, a product design 1 =§; x >< §, €E, is determined by g se-
quences of canonical moments p; = (p1 ,p2 , .-, j=1,...,q where the jth
sequence corresponds to the jth factor of the product design n, i.e.

NET, — & X...xE, <P, ..., Py
It turns out that the D-optimal product design can easily be described by the cano-
nical moments of its factors and that all canonical moment sequences py, ..., P,
- 0 _
of the D-optimal product measure terminate with p;’ = 1 for some i €N,
j=1, ..., q. In order to describe this design explicitly define
mj = max {hj l Ihl,...,hq = 1} (13)

as the largest exponent of the variable x; in the “incomplete” regression (6)
G=1,...,¢9) and

IG0) = 20 Thn (14)

L" n<m
h'vl

as the number of terms in the model (6) which are of degree smaller than or equal
to m and which contain the factor factor xj' (i=1, ,m, j=1,...,9). The
following result has been proved by DETTE and RODER (1996) and provides a
complete solution of the D-optimal product design problem for an “incomplete”
multivariate polynomial from a theoretical point of view. It also turns out to be the
basic ingredient for our algorithm.

Theorem 3.2: The D-optimal product design for an mcomplete polynomzal

regression (6) satisfying the basic assumpnon (7) is given by n* =&} x -+ x E},;
Here, for j=1,...,q, the jth factor J is a design which is uniquely delermmed
by its canonical momenits p; = @1 , p7 ,) where
pgl)_lzé, I=1,...,m,
| 3,70, )
Py =+ I=1,...,m—1, (15)

ZI(I D+ Z Z(3, J)

i=l+1

W _

p"mj -

and m; and I (i, j) are defined in (13) and (14).
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q
In the case of a general symmetric cube as design space, say X = ®[-b;,bj, a
=1

similar anlysis applies. Using well known invariance properties of thje D-optimal-
ity criterion [see FEDOROV (1972)] it turns out that the factors of the D-optimal
product design 0™ = £ x - - x X on X can be obtained as follows. In a first
step the design problem on the cube [—1,1]? is solved. In a second step every
factor € of the D-optimal product design n* = E** x ... x g on [-1,1) is

transformed linearly onto the correponding interval [—b;, bj] giving the factor E}k*,
J=1,...,q. We have implemented this general design space in our program

which will be described in the next section.

4. The Algorithm and its Implementation

4.1 Algorithm

The program can be devided into two general parts, the graphical representation of
the model combined with the output of the results and the calculation of the D-opti-
mal designs including the selection of a special model structure. There is also an
option of storing the results in a file, which could be considered as a third part. The
general structure of the program is shown in a flowchart in Figure 1. For a more
detailed description of the algorithm we restrict ourselves to the “second” part.

Before determining the optimal designs, a concrete “incomplete” polynomial re-
gression model has to be specified by the experimenter. For this reason the algorithm
realizes in a first step the assignment of the indicator functions (see (5)), which deter-
mine the model (6) completely. This part of the algorithm controls also the confor-
mity of the chosen model with assumption (7) by deleting or adding regression func-
tions such that the final model satisfies (7). If the model has been specified correctly
and the boundaries of the g-dimensional cube have been fixed the calculation of the
D-optimal product designs is performed. This is done by applying the procedure de-
scribed in the previous section. In a first step the algorithm calculates the g sequences
of canonical moments p,, ..., p, defined in Theorem 3.2 by equation (15). As
pointed out in Section 3 these sequences correspond to the factors £7, . . . , &, of the
D-optimal product design. Note that in contrast to many other algorithms in optimal
design theory these calculations are not performed iteratively and only require

(q-f—mj—l)_l
q

additions and m; — 1 divisions for each of the j factors (j = 1,... g). This follows
by a straightforward calculation from (13), (14) and (15). The knowledge of the
canonical moments of the univariate designs enables us now to specify support
points and masses of the corresponding measures explicitly by evaluating two
polynomials which can easily be obtained by a recursive procedure [see DETTE
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" Title ./ Introduction’. -

Graphical representation of
the Model

Setting of the indicatorfunctions

Interval choice

- Calculations
f

L —
—_Factor designs

v
Calculation of the canonical
moments

Calculation of support points

Calculation of masses

v

Calculation of the Productdesign

Save results in file

Fig. 1. Simple flowchart of the pro-

l EXIT l gram OPTIMAL.EXE
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and RODER (1996)]. If the largest degree of the variable x;j is mj, the algorithm
determines numerically m; — 1 zeros of a symmetric polynomial of degree m; — 1,
J=1,..., q. For lower degree explicit formulas for the zeros are also implemen-
ted in the algorithm. In a final step a simple multiplication of the probablity
masses of the factor designs provides the masses of the D-optimal product design
at the appropriate points in the g-dimensional design space.

4.2 Implementation and application

The program is written in Turbo Pascal 6.0 under the operating system MS-DOS
6.20. To run our software without problems an IBM compatible PC is required
which is operating under (MS-)DOS, has a VGA/EGA graphic device and a
mouse installed. All needed units, graphic drivers and fonts are already implemen-
ted in the object-code which is available from the authors via ftp'. The program is
designed for easy and quick use so the handling should be self-explaining. A brief
description will be given here.

To start the program simply run OPTIMAL.EXE from the DOS-prompt. The user
has now the opportunity to choose a short online introduction/description or to skip
this and go to the next screen which provides an environment for the selection of the
“incomplete” model. Here a complete polynomial regression model in four variables
up to degree four is shown, which is the maximal model that can be dealt with by the
present program. The restriction on the number of variables and the degree is not
caused by any numerical difficulties. It is introduced due to practical and ergono-
metric reasons in the presentation of the “complete” model on a computer sceen. In
general there is no restriction to the dimension of the cube and the degree of the
polynomial. The algorithm can easily be extended to these cases.

The model shows the regession functions of the “complete” model (not the corre-
sponding coefficients) which are arranged in increasing order of degree. That means
there are five “sections”. The first line contains the intercept, the second line the
linear components etc. The last four lines contain the regression functions of order
four. By using the mouse it is now possible to adjust the model to the concrete needs
of the experimenter. Clicking the left> mouse button into a chosen component will
remove it from the model. Any canceled component can be got back by simply
clicking the right mouse button on it. Using left and right mouse button at the same
time removes all components of the corresponding degree. At the bottom of this
screen there are two extra buttons which produce an empty or a complete model.

As mentioned in the description of the algorithm the program will control the
conformity with the basic assumption (7) automatically. So any misspecification
will be corrected immediately by adding or deleting all necessary components in
the model.

1 +ftp:/fftp.imise.uni-leipzig.de/pub/ingo/program/
2 depending on the configuration of the computer
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After the specification of the model the user can decide if the results should be
saved in a file (which will be written into the current working directory). The
structure of the these files will be illustrated in the example of the following sec-
tion. In the next step it is requested to choose the regression region. The default
(pressing (ESC)) will result in the cube [—1, 1]%. For more general cubes

q
X = @[—bj, bj] all boundaries of the intervals have to be specified separately.
j=1

The following screen shows the factors of the D-optimal product design. After
that the complete D-optimal product design for the chosen model is presented.
The last screen (most models produce product designs over several screens) offers
the possibility to quit the program (by pressing (x)) or to select a new model.

5. Example

Consider the “incomplete” second order resgonse surface relationship (3) of Exam-
ple 2.1 on the three dimensional cube [0, 1]

O + O X] + OpXp + 03x3 + OgX1 X2 + O(.SX% . (16)

To select this model in the program the user has to cancel all components of the
“complete” polynomial regression except the intercept, x;, X2, x3, x1x2 and x%.
Alternatively one could also first use the option “empty model” and then add the
corresponding components. The resulting model is displayed in Figure 2. In the
next step the design space [0, 1]° has to be specified by entering the boundaries of
each interval. The following screen then presents the factors of the D-optimal
product design, which is illustrated in Figure 3. The final screen (for models with
a large number of parameters there can be several pages) will show the D-optimal
product design in the specified model (see Figure 4).

If the user chooses the file-save option, the output corresponding to Example
2.1 will have the following structure:

components of the chosen model:
(0,0,0,0)(1,0,0,0) (0,1,0,0) (0,0, 1,0) (2,0,0,0) (1,1,0,0)

factors of the D-optimal product design:
x1 [0, 11: (0/37.50) (0.5/25.00) (1/37.50)
x2 [0, 11: (0/50.00) (1/50.00)
x3 [0, 1]: (0/50.00) (1/50.00)

D-optimal product design:

0, 0,0, -/9.38) (0,0,1,-/9.38) (0, 1,0, -/9.38)
0,1,1,-/9.38) (0.5,0,0, -/6.25) (0.5, 0, 1, —/6.25)
0.5,1,0, -/6.25) (0.5, 1, 1, -/6.25) (1,0, 0, —/9.38)
(1,0,1,-/9.38) (1, 1,0, -/9.38) (1, 1, 1, —/9.38)
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conplete nodel

Fig. 2. Screenshot: Selection of the model for Example 2.1

W 1 : SUppor t-poi ht 51 - 000 0.50 1.00
‘ ‘masses & 37.500 25.000 37.500
X 5 suppart-points 1 0.00 1.00
nasses ¢ 50,000 50.000
X 5 ‘ support—pol nts : .00 1.00
masses . B0.000 50,000
X 4 support-points : not in the model
masses : ‘

Fig. 3. Screenshot: Factors of the D-optimal product design for Example 2.1
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x,| ooo | om0 | 1oo

00D | o000 | 9.375 | 6.280 | 9.375
| 100 '9.375 | &.250 | 9.375
1.000 | 000 | 8375 | e280 | 9375
1.00 9,376 | €250 | 9.375 |

Fig. 4. Screenshot: D-optimal pro-
duct design for Example 2.1

In order to explain the first two lines recall that the model is determined by the
indicator functions in (5). Each position inside the brackets represents the power
of the corresponding variable. For example (0, 0, 0, 0) and (1, 1, 0, 0) represent
the regression functions 1 = x?xgxg)xg and xjx; = x}xéxgxg, respectively. In the

following lines the factors of the D-optimal product design are given in the form:

variable [regression region] : (support point /
probability mass in % at this point) .

For example, in the “incomplete” second order model (3) the first factor of the D-
optimal product design has mass 37.50% at the point 0. Finally, the product de-
signs are represented as follows:

(components of the support point / percent of
observations to be taken at this point) .

For example, in the “incomplete” second order model (3) the D-optimal product
design advises the experimenter to take 9.38% of the observations at the origin.

It might also be of interest to compare the design for the “incomplete” model
with the optimal product design for the “complete” second order response surface
relationship (3) which is given in Figure 5. We observe that this design advises

x,| 0.00 | 0D 1.00
*3 £z
.00 0.00 €.400 2,200 &.400
.50 I.200 1.600 3,200
1.00 €.400 200 &.400
0.80 .00 2200 1,800 3.200
0,50 1.€00 G.800 1.800
1.400 2,200 1.600 3.200
1.00 0.00 c.400 2200 &.400
.50 o200 1.600 3.200 L .
PP P — Fig. 5. Screenshot: D-optimal pro-
1.00 £. 400 S0 &0 duct design for the “complete” sec-

ond order model (3)
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the experimenter to take observations at 27 different points. The optimal design
for the “incomplete” model only needs 12 points, because the parameters corre-
sponding to the quadratic terms of variable x, and x3 do not have to be estimated.
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Neue Preise fiir Dienstleistungen der UB/TIB ab 1. September 2000

- aufgrund des neuen Gesamtvertrages ,Direktkopienversand® zwischen Bund/L:
und der VG Wort -

Verehrte Kundschaft der UB/TIB,
Sehr geehrte Damen und Herren,

Sie kennen uns als kompetenten und zuveridssigen Dokumentlieferanten mit
Uberdurchschnittlichem Service und fairem Preis/Leistungsverhaltnis. Unser
Dienstleistungsangebot orientiert sich stets an den Wiinschen und Bedirfnissen L
Kunden unter dem Einsatz neuester Techniken.

Eine soiche Fiexibilitat ist uns bei der Preisgestaltung aufgrund gesetziicher Vorga
jedoch nicht mdgiich. Nach neuesten urheberrechtlichen Bestimmungen muss fur
Dokumentlieferung (Aufsatzkopie) an Sie ab dem 1. September 2000 eine Vergit:
die Verwertungsgesellschaft Wort (s.a.: http://mww.bdbibl.de/dbv/urheberrecht.htrr
http://www.vgwort.de) abgeflihrt werden (sog. ,Veriegertantieme®). Das bedeutet, «
unsere Preise, die wir Uber Jahre fiir Sie konstant halten konnten, neu kalkulieren
anpassen mussten.

Unserer neuen Preistabelle auf der Riickseite dieses Schreibens kénnen Sie entr
wie sich die Preiserhdhungen auswirken: am deutlich glinstigsten bestellen Sie zu
Uber unseren elektronischen Dokumentlieferdienst TIBORDER-Online (Internet-
Adresse:http://tiborder.tib.uni-hannover.de), ber den Sie Ihre benétigten
Verdffentlichungen auf dem schnellsten Wege direkt erhalten.

Selbstverstandlich stehen lhnen auch weiterhin die konventionellen Bestellwege p.
Fax, vorab gekaufter Bestellscheine oder formioser e-mail zur Verfugung.

Wir méchten Sie auch weiterhin als zufriedene Kunden bedienen und bitten um Ih.
Verstandnis.

Mit freundlichen GriRen

lhre UB/TIB Hannover
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