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ABSTRACT Early development of multicel-
lular organisms is marked by a rapid initial in-
crease in their cell numbers, accompanied by
spectacular morphogenetic processes leading to
the gradual formation of organs of characteristic
shapes. During morphogenesis, through differen-
tiation under strict genetic control, cells become
more and more specialized. Morphogenesis also
requires coordinated cell movement and elabo-
rate interactions between cells, governed by fun-
damental physical or generic principles. As a
consequence, early development must rely on an
intricate interplay of generic and genetic mech-
anisms. We present the results of computer sim-
ulations of the first nontrivial morphogenetic
transformations in the life of multicellular or-
ganisms: initial cleavages, blastula formation,
and gastrulation. The same model, which is
based on the physical properties of individual
cells and their interactions, describes all these
processes. The genetic code determines the val-
ues of the model parameters. The model accu-
rately reproduces the major steps of early devel-
opment. It predicts that physical constraints
strongly influence the timing of gastrulation.
Gastrulation must occur prior to the appearance
of dynamical instability, which would destabilize
and eventually derail normal development.
Within our model, to avoid the instability, we
suddenly change the values of some of the model
parameters. We interpret this change as a conse-
quence of specific gene activity. After changing
the physical characteristics of some cells, normal
development resumes, and gastrulation pro-
ceeds. © 2000 Wiley-Liss, Inc.
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INTRODUCTION

After fertilization, many multicellular organisms go
through a sequence of cleavages leading to a layer of
rapidly dividing cells enclosing a hollow spheroidal
blastula (Gilbert, 1997; Wolpert, 1998). Subsequently,
the layer folds, and gastrulation takes place, during
which the animal builds its digestive system and feed-
ing apparatus. Blastula formation and gastrulation are
the earliest manifestations of morphogenesis, the set of
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pattern-forming mechanisms that create complex bio-
logical forms out of simpler structures. A fundamental
question in developmental biology is what drives mor-
phogenesis? What determines the morphology of the
developing organism? According to one view, forms and
patterns result from the unique program encoded in
the DNA. Another view holds that the determining
factors of morphogenesis are epigenetic, intrinsic self-
organizing properties of tissues, analogous to other
viscoelastic materials. Neither of these extreme views
can adequately describe developmental phenomena
(Gurdon, 1992), and the genetic and generic-physical
properties must interplay (Newman and Comper,
1990). The embryo produces the “building material”
(e.g., proteins) for its development from the available
nutrients, according to the rules embodied in its ge-
netic code. Then diffusion, spreading, differential ad-
hesion, chemotaxis, and so on transport these building
materials to specific regions of the developing organ-
ism. The transport of matter obeys the laws of physics.
The mechanical or chemical changes that may take
place during transport (changes in concentration, cell
shape, adhesiveness and cohesiveness, etc.) are signals
(Dolmetsh et al., 1997) that often influence the produc-
tion of the building material itself, that is, gene activ-
ity.

Early morphogenesis, in particular epithelial folding
(Etteshon, 1985) during gastrulation, has been studied
extensively in various organisms, and a number of
models have been proposed. In the more biological
models, like the one of Leptin and Grunewald (1990)
for Drosophila gastrulation, the correct execution of
patterning requires the coordinated activity of specific
maternal and zygotic genes. The more physical models
(Odell et al., 1980, 1981; Davidson et al., 1995; 1999 for
sea urchin gastrulation) rely on generic processes, the
mechanical properties of individual cells (Hiramoto,
1968, 1969; Hochmuth et al., 1993) or tissues (Drasdo
et al., 1995; Foty et al., 1996; Forgacs et al., 1998), and
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contain adjustable parameters. Since the relationship
between the model parameters and the specific molec-
ular building blocks of the organism are not known,
despite great efforts, the precise mechanism of epithe-
lial folding remains elusive.

Our primary motivation is the realization that un-
derstanding the full course of development requires
understanding the interplay between genetic and ge-
neric processes. We introduce a dynamical model of
early morphogenesis based on specific properties of
cells and their interactions known to play a fundamen-
tal role in folding. Based on the model we perform
extensive computer simulations of blastula formation
and gastrulation. We show how properties like cell
shape or strength of cell adhesion, when under strict
genetic control, naturally constrain morphological phe-
nomena. The distinguishing feature of our approach is
that we are able to follow developmental pattern for-
mation from the initial cleavages through blastula for-
mation up to gastrulation using essentially the same
model, only modifying its parameters. The specific val-
ues of these parameters for a given organism at a given
time reflect biological specificity.

Our objective is not to “build an animal,” and to
reproduce minute details of blastula formation and
gastrulation using physics and mathematics. Despite
spectacular progress in molecular biology, biochemis-
try, and biophysics, quantitative information on devel-
opmental processes is scarce. A model reproducing ev-
ery aspect of early morphogenesis cannot be realistic,
even for a particular animal. We hope to illustrate for
a specific developmental process how to relate morpho-
genetic changes to measurable physical properties and
to suggest how to tie these properties to the molecular
alphabet of cells and tissues.

RESULTS
Model for Early Morphogenesis

The first nontrivial cellular structure that appears in
the developing multicellular organism is the blastula.
It may be fully symmetric (radial holoblastic cleavage,
e.g., in the sea cucumber Synapta digita) or possess
lower symmetry, as in some worms (spiral holoblastic
cleavage), tunicates (bilateral holoblastic cleavage), or
mammals (rotational holoblastic cleavage). The degree
of synchronization of cell division and the orientation of
cell division planes determine the symmetry of the
blastula. In animals that show radial holoblastic cleav-
age, synchronization may either be perfect (as in the
sea cucumber) or, in later stages, show differences be-
tween the vegetal and animal pole, as in the sea urchin
(Gilbert, 1997).

Two theories try to explain the formation and expan-
sion of the blastocoele. Dan (1960) hypothesized that
the motive force of this expansion is the blastocoele
itself. As the blastomeres secrete proteins into the blas-
tocoele, the blastocoele fluid becomes syrupy. This blas-
tocoele sap absorbs large quantities of water by osmo-
sis, thereby swelling and putting pressure on the
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Fig. 1. Schematic sequence of cell divisions (shown in two dimen-
sions) for holoblastic cleavage. (i)—(iv) illustrate an idealized situation with
the daughter cells occupying the original volume of the zygote. (v) shows
a particular daughter cell from the eight-cell stage. Its membrane, at the
periphery and at the center of the cell configuration shown in (iv), has
extremely sharp turns. The edges have very high bending energy and, as
a consequence, experience a force ﬁl + IE2 opposing the curve, as
indicated in (v) (forces are shown only for the center). Depending on the
bending rigidity (the extent to which a material resists bending) of the
membrane, the rounding of each cell in (iv) results in a cell configuration
similar to (vii) (small bending rigidity) or (viii) (large bending rigidity). The
requirement that a change in cell shape leave the total cell mass, or cell
volume unchanged leads to a net displacement of cell mass away from
the center.

blastomeres to expand outward. Wolpert and Mercer
(1963) have proposed that this effect does not need
pressure from the blastocoele. They emphasize the role
of differential adhesion between the cells and to the
hyaline layer enclosing them. These authors point out
that as long as cells remain strongly attached to the
hyaline layer, they do not have an alternative but to
expand. This expansion creates the blastula, rather
than the other way around.

In the present work we propose a mechanism for
blastula formation and gastrulation in the case of per-
fect holoblastic cleavage. The proposed mechanism is
based on the properties of individual cells and their
direct interactions. Below we summarize the major
features of our model and its assumptions.

1. During formation of a hollow spherical blastula and,
subsequently, of the gastrula, cell division proceeds
at constant embryo mass. The total number of cells
grows exponentially to several thousands (Gilbert,
1997).

2. Cells remain cuboid during cleavage. Therefore,
strong bends or kinks in the material of their mem-
brane are energetically disfavored. Thus, we assume
that large changes in the local geometry (i.e., curva-
ture) of the membrane generate a restoring force,
which tends to flatten the variation in geometry. As
Fig. 1 illustrates, such an assumption requires that
during cleavage the cell mass shifts outward, away
from the center of the embryo.

3. Cells bind to an extracellular hyaline layer. Hence
the mechanical properties of the cell layer and the
extracellular layer determine those of the blastula
and the gastrula (Davidson et al., 1999). In reality,
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cells also attach to the basal and apical lamina.
Since their effect on the mechanical properties is
considerably weaker (Gilbert, 1997; Davidson et al.,
1995) we neglect them.

. Cells in the early embryo are polar and, as a conse-

quence of the inhomogeneous distribution of their
adhesion molecules, form cell-cell contacts in special
regions of their membrane, resulting in preferred
cell configurations (Wolpert, 1998) that we believe
correspond to local minima in the (free) energy. De-
viations from preferred cell shapes and configura-
tions increase the energy. In our model, the energy
of a cell configuration contains the following contri-
butions.

@)

(i1)

An interaction energy of neighboring cells. Em-
bryonic cells in contact form adhesive bonds.
With decreasing distance between the centers of
the cells (e.g., upon compression) their contact
area and, with it, the number of adhesive con-
tacts increase, resulting in an attractive inter-
action. On the other hand, if cells are spheroid in
isolation, a large contact area between them
significantly stresses their membranes or,
equivalently, costs steric entropy (Helfrich,
1978). Furthermore, it is reasonable to assume
that under physiological conditions cells have a
small compressibility. The loss of entropy and
limited compressibility give rise to a repulsive
interaction.

The manifestation of local physical interac-
tions (i.e., between individual cells) at larger
scale (i.e., blastula) is quite insensitive to the
detailed shape of the corresponding interaction
energy (Odell et al., 1981; Drasdo et al., 1995;
Drasdo, 1996). We therefore model the combina-
tion of the repulsive and attractive energy con-
tributions by the interaction energy shown in
Fig. 2. (Mathematical details on the interaction
energy are collected in the Appendix.)

The physical interactions responsible for
these competing energy contributions have a
characteristic range 8, determined by the de-
formability and the glycocalix of the cell, the
properties of the hyaline layer, and the nature of
cell adhesion molecules. Such interactions are
typically short range. Since cells interact di-
rectly only with their closest neighbors, 8 in Fig.
2 is larger than the width of the glycocalix but
does not exceed the radius of an uncompressed
cell. The elastic properties of the cell layer and
the surrounding hyaline layer determine the
shape of the interaction energy within 3 by the
parameter €, as shown in Fig. 2.

Polar cells have characteristic apical and basal
surfaces. They form contacts with their neigh-
bors along the lateral part of their membranes
and often form two-dimensional, single-cell lay-
ers or epithelial sheets. The preferred geometry
of the layer and the shape of the cells within the

Fig. 2.. The interaction energy V; in the contact region between two
neighboring cells / and j as a function of the distance dj; between the
centers of the cells. The shape of Vj reflects the limited compressibility of
the cells (d; cannot be smaller than a minimal distance d,;) and incorpo-
rates the entropic contributions of their membranes. Furthermore, it con-
tains direct cell-cell adhesion and the elastic contribution of an attempt to
separate cells. The value of V; at d,, + 8 (V; = ) forces cells to remain
in contact during blastula formation and gastrulation. 3 includes the range
over which a cell can be stretched or compressed in a certain direction as
well as the interaction range of cell adhesion molecules. Hence, 3§ is the
range of interaction between neighboring cells.

layer depend on the location of cell adhesion
molecules, as shown schematically in Fig. 3a.
Analogous to polymer membranes, the preferred
shape of the sheet at the position of the i-th cell,
has a local “spontaneous curvature” c; (Lip-
owsky, 1991). (The curvature of a curve at point
i is 1/r;, where r;, the local radius of curvature,
is the radius of the circle that matches the curve
at that point; the curvature of a straight line is
everywhere zero. In the local minimum energy
state 1/r; = ¢,.) Any bending of the sheet dis-
torts the membranes and consequently the cy-
toskeleton of the cells making up the sheet, re-
sulting in a deviation of the curvature of the
sheet from the spontaneous curvature (1/r; #
¢;), and consequently in the increase of energy
associated with the membrane’s bending (Hel-
frich, 1978; Lipowsky, 1991) and the cytoskele-
ton distortion. The energy of bending (away
from the preferred shape) depends on the mate-
rial of the sheet: the more rigid the sheet, the
more difficult it is to bend. This resistance to
bending defines the effective bending rigidity «
of the epithelial sheet (Lipowsky, 1991).
Whereas the preferred shape of the individual
cell i (characterized by the angle B, in Fig. 3a)
exclusively determines the spontaneous curva-
ture c;, once it is part of a tissue layer, the
actual curvature of the sheet (r, in Fig. 3c) de-
pends also on the positions of the cells’ neigh-
bors. If cell i changes its shape actively (for
example, owing to differentiation that may alter
its cytoskeleton or the distribution of cell adhe-
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apical

sion molecules along its membrane), it affects
the shape of neighboring cells as well, by chang-
ing the local curvature of the tissue sheet in the
vicinity of cell i. If none of the neighboring cells
resists the change in shape of cell i, cell i exclu-
sively determines the local radius of curvature
r; by r, = 1/c;; bending of the sheet does not
cost energy. In the idealized situation, when all
cells in a given arrangement are identical (of the
same type, at the same point in the cell cycle,
etc.), the spontaneous curvature is the same for
all of them (i.e. ¢; = c¢ independent of i). The
explicit mathematical form of the bending en-
ergy, in terms of ¢;, k and r;, used in this work
is given in the Appendix.

5. Active cell movement characterizes early morpho-
genesis. This movement, which leads to the appear-
ance of new forms, on one hand must satisfy the
constraints imposed by the activity of maternal and
zygotic genes and on the other hand should proceed
according to the governing physical mechanisms,
which exert forces on the cells. These forces depend
on the explicit form of the interaction energy and
bending energy discussed earlier as well as many
other factors and should eventually lead to configu-
rations with minimal mechanical stresses (at least
temporarily). In order to incorporate additional fac-
tors, we assume that during cleavage extracellular
components provide a friction-like resistance to the
displacements and orientational changes of the cells
within the developing tissue sheet. The stronger the
friction, the slower the cells move. Our model incor-
porates friction and additional biological and chem-
ical processes, like metabolism, intra- and extracel-
lular transport, movements of the cytoplasm, and
the reorganization of the cytoskeleton by imposing
an additional stochastic force on the cells.

6. The mobility, geometric environment, and the inter-
action of a cell with its neighbors affect the observed
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Fig. 3. A: Preferred individual cell shapes de-
pending on the location of adhesion molecules (black
areas). In this two-dimensional representation, the
angle B, uniquely determines the preferred shape of
the cell and therefore the local spontaneous curva-
ture, c. Circles with the associated angles demarcate
the simplified shape we use to represent cells in the
simulations. The optimal configuration of a sheet con-
taining only cells with preferred shapes (i) or (iii) is a
closed surface with the basal lamina oriented either
toward the interior [(i), B, < =] or toward the exterior
[(iii), B, > =]. B: Preferred cell shape (i) (8, = 0)
results in an optimal configuration with an open, pla-
nar cell sheet and equal distance between the cen-
ters of (identical) cells. C: Deviation from the optimal
configuration shown in panel B. For cell type (ii) any
bend (characterized by finite local radius of curvature
r and deviation angle B) increases the bending en-
ergy. (Here the radius of curvature and the deviation
angle are shown only for cell 2.) Note that for cell type
(i) the illustrated configuration is optimal if B; = B,
where j denotes any cell in the sheet.

cell cycle time. The cycle time also depends on the
cell’s intrinsic properties, which we incorporate by
introducing the intrinsic cell cycle time 1. We inter-
pret T as a quantity that may change through purely
chemical means (e.g., by growth and inhibition fac-
tors). For an isolated cell not affected by physical
interactions with neighboring cells, T is the average
cell cycle time. If excluded volume interactions are
present, the observed cell cycle time 7 is typically
larger than the intrinsic cycle time, that is, 7 = 7.

We simulate friction-limited stochastic dynamics,
driven by physical interactions due to mechanical
forces, as described earlier, using the Monte Carlo
method (Metropolis et al., 1953; for an application to
growth in tissues, see Drasdo, 1996). Such simulations
in three dimensions are extremely time consuming.
Our simulations in this work are two-dimensional,
equivalent to considering only spherically (e.g., sea ur-
chin) or axially (e.g., sea cucumber) symmetric embryos
(the issue of dimensionality is discussed in Drasdo,
2000). Thus, all the figures showing cell configurations
can be interpreted as two-dimensional projections of
three-dimensional structures. (We cannot exclude with
certainty that fundamentally new phenomena do not
occur in three-dimensional simulations, which will be
performed in the future.) The section on experimental
procedures gives details on the simulation algorithms.

We have introduced several parameters, such as the
characteristic strength (e) and range (3) of cellular in-
teractions, as well as spontaneous curvature (c), bend-
ing rigidity (), and intrinsic cell cycle time (7). In the
course of development, the rules embodied in the ge-
netic code determine and control the change in the
values of these parameters. We assume that most of
the time this change is not too rapid. If it were, these
parameters would have no meaning and any effort to
interpret aspects of morphogenesis in terms of physical
models would be futile.
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Fig. 4. The evolution of the cellular pattern in the computer simulation
for €(0) = 7 X 106 kcal/mol and «(0) = 5 X 10* kcal m/mol. As explained
in the Appendix, the magnitudes of these parameters vary with the size of
the cells, i.e. with the number of cell divisions, m. The above values refer
to the zygote (m = 0). For the chosen values of € and « configurations
(i)—(vii) correspond to normal development. A dynamical instability sets in
after the 64-cell stage (vii), which in a spherical embryo would correspond

Blastula Formation

We start our simulations with a single cell and termi-
nate them either when the number of cells reaches N =
1,024 or when a particular cell acquires more than two
neighbors. Figure 4 shows the result of a typical simula-
tion. The number of cells grows exponentially, and after a
series of cell divisions a hollow spherical blastula forms.
With further divisions spherical symmetry disappears;
the blastula becomes unstable and folds. Within our
model this instability is generic and shows up over a wide
range of parameter values. Figure 5 summarizes the sen-
sitivity of blastula formation to changes in cell elasticity.
We vary e, k, and 8 within limits compatible with avail-
able experimental information. (The relationship be-
tween our model parameters and the experimentally
known quantities is discussed in the Appendix.) As the
figure reveals, varying the parameters does not affect the
appearance of the instability; its occurrence merely shifts
in time. (In three dimensions effects nonexistent in two
dimensions may further influence the exact timing of the
instability.)

The origin of the instability is the following (for a
more general discussion, see Drasdo, 2000). The
growth and division of cells requires that either indi-
vidual cells or the entire cell layer be able to migrate.
Small stochastic differences in the migration result in
undulations in the shape of the sheet, which initially
decay owing to the smoothening effect of the bending
energy. As cells proliferate, both the number and the

to about 2,000 cells. (Owing to the uncertainties in the experimental
values of €(0) and k(0), such an instability would not necessarily occur at
the 2,000-cell stage. Furthermore, shear energy (which may occur in
three dimensions) or an osmotic pressure may alter the onset of the
instability. With further growth of the cell population, the folding of the
blastula becomes more pronounced, as seen in patterns (viii)—(xi).

extent of these undulations increase. Eventually the
bending energy is unable to smooth the sheet and fold-
ing takes place. Increasing the value of k and with it
the stabilizing effect of the bending energy postpones
folding but does not suppress it. The bending rigidity
reflects the composite physical properties of both the
cell and the hyaline layers and can be modified by
various chemicals (Davidson et al., 1999). Davidson et
al. (1999) have found that the elastic properties of the
hyaline layer determine those of the sea urchin em-
bryo. Thus, it should be possible to study experimen-
tally the correlation between k and the appearance of
the instability, shown in Fig. 5.

We also have varied the intrinsic cell cycle time T
(results not shown; see Drasdo [2000] for the cycle time
dependency of the instability). A tenfold variation in 7
leads to a crossover from exponential to slower than
exponential growth followed again by a geometric in-
stability. Irradiation or growth factors may modify T;
hence we could test this finding experimentally. The
results of this section indicate that in the absence of
any additional regulatory process, the blastula is
bound to fold, derailing normal development.

Gastrulation

The near spherical symmetry of the blastula cannot
persist beyond a certain stage of development. The
organism must be able to sense the approaching insta-
bility and react to it. To avoid folding, with its detri-
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Fig. 5. Sensitivity of blastula formation to changes in cell elasticity.
The evolution in column A corresponds to Fig. 4. For columns B and C
the values of € and k are €(0) = 2.2 X 10° kcal/mol and k(0) = 1.3 x 10*
kcal m/mol (B) and €(0) = 1.5 X 10° kcal/mol and k(0) = 3 X 10° kcal
m/mol (C), respectively. Up to the eight-cell stage the patterns evolve
identically. For large € and k the dynamical instability develops later.

mental consequences on normal development, genetic
mechanisms must lead to differentiation and, with it,
to changes in physical parameters. In the sea urchin,
near the vegetal pole of the blastula a distinct group of
cells appears—the primary mesenchymal cells. Con-
comitant with this differentiation, the blastula flat-
tens, cell division slows down and eventually stops, and
gastrulation starts. Gastrulation involves the motion of
a large number of cells to invaginate the blastula
around the vegetal pole. In our model, invagination
requires a drastic change in the bending energy, ac-
complished by assuming that differentiation of cells
near the vegetal pole modifies their spontaneous cur-
vature, which until now was zero. (In two dimensions
the circle is the configuration with minimum energy for
all choices of spontaneous curvature, as long as all cells
have the same spontaneous curvature [Drasdo, 2000]).
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For sea urchin gastrulation (Odell et al., 1980, 1981;
Davidson et al., 1995, 1999) we know the values of most
of the model parameters within certain limits (for a
comprehensive list, see Davidson et al., 1995), or they
can be determined (see Appendix). Sea urchin gastru-
lation starts at around the 1,000-cell stage, correspond-
ing to about 50 cells along the perimeter in the two-
dimensional circular cut of the blastula. For realistic
values of the model parameters, the folding instability
develops after the 64-cell stage (Fig. 4). To avoid this
instability, we assign cells at the 64-cell stage in the
“contractile region” (with the size of 11 cells in Figs. 6
and 7) nonzero spontaneous curvature ¢, which, within
our model, corresponds to differentiation. Simulations
leading to Figs. 6 and 7 used a gradient in c. Cells at
the edge of the contractile region have the smallest
absolute value of ¢, which increases toward the center.
If ¢ is positive, the model leads to an exogastrula. At
this point we do not know how to relate ¢ to specific
genes or molecular parameters. However, the figures
show that its distribution can describe quite accurately
the real gastrula (Gilbert, 1997).

Invaginating cells actively change their shape (hence
the term contractile region). In our model the shape
deformation of cells drives gastrulation (and blastula-
tion). In Figs. 6 and 7 we represent cells by circles
corresponding to epithelial cells of various shapes, as
explained in Figs. 3 and 8.

DISCUSSION

Early morphogenesis in multicellular organisms
leads to spectacular forms that develop from simple
cellular structures. According to the widely held view,
such pattern-forming processes are driven and con-
trolled by morphogens, specific chemicals. Chemicals,
however, do not define the rules for cellular motion
accompanying developmental changes. Physical inter-
actions and underlying laws do. It is these physical
laws that restrict the possible forms and shapes that
cellular patterns may adopt.

Our dynamical model describes early morphogene-
sis, starting with fertilization and ending with primary
invagination in gastrulation, based on realistic physi-
cal interactions between individual cells. Genetic
mechanisms specify the values of the parameters char-
acterizing these physical interactions. In our model
differentiation modifies these values. In this way, in-
stead of constructing another physical model to de-
scribe post-blastula development, we are able to use
the original model with slightly changed parameters.
Normal development then may continue, and the
model leads to primary invagination signaling the on-
set of gastrulation.

Davidson et al. (1995) studied five different models of
primary invagination, which considered the embryo to
be an elastic body and invagination to be driven by
various parts of this body (e.g., by the microfilament
network in the apical constriction model or by the
contraction of cells in the vegetal plate in the apico-



188

Fig. 6. Gastrulation for e = 7 X 10° kcal/mol and k = 5 X 10* kcal
m/mol. At the 64-cell stage (last figure in the left column) differentiation (i)
suppresses further cell divisions (thus e and k do not change their values)
and (ii) changes the cytoskeleton of the shaded 11 cells in such a way
that the spontaneous curvature locally becomes negative. From the
leftmost cell 1 to the rightmost cell 11, the spontaneous curvatures follow
the pattern ¢,, ¢,, €3, €4, Cs, Cg, Cs, C4 C3, Co, €4, With ¢; = A X i (i€, cells
1 and 11, 2 and 10, etc., have pairwise the same spontaneous curva-
tures). Here, A = —2. Note that involution occurs simultaneously in the
whole invaginating region, as pointed out by Kam et al. (1991).

basal contraction model). Recently, the same authors
have measured the composite elastic modulus of the
cellular and extracellular matrix layers of Strongylo-
centrotust purpuratus embryos at the mesenchyme
blastula stage, to restrict the proposed physical mech-
anisms for gastrulation (Davidson et al., 1999).

Our model of early development can describe several
morphogenetic transformations (e.g., blastula forma-
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Fig. 7. Cell configurations at the onset of gastrulation (left column)
and at the end of gastrulation (right column) for various values of A. For
A ~ —2 the proposed mechanism allows the archenteron to invaginate
about two-thirds of its full length, which corresponds to the physiological

situation.
- “ T @ + Q

Fig. 8. Cell division in the simulation. The cell deforms by decreasing
its instantaneous radius (in its maximally compressed state) R(t) = {(})R
(LM < 1) from R (at t = 0) — R/\V/2 (at t = 7,) in small steps &, where &
is a uniformly distributed random number in the interval 0 = & =< £€™® with
£M < R. The quantity {(f) contains information on the cumulative effect
of these small steps. Accordingly, the axis a(f) increases to keep the total
area of the cell constant during one division cycle. The dumbbell shape
ensures constant area. On a time scale larger than the cell cycle time, this
choice of the cell division algorithm should not influence the final results
(for a more detailed discussion on this point, see Drasdo, 1996). R
denotes the radius of a cell in its maximally compressed state, which
corresponds to the minimal distance d, (Fig. 2) between the centers of
neighboring cells (immediately after division) or the centers of the nearest
circles of neighboring dumbbells (during cleavage). The true linear extent
of a cell depends on both R and & (for details see the Appendix).

tion and primary invagination) and incorporates both
physical processes and cell division. The model predicts
correlations among the onset of instability in the shape
of the blastula, the rate of mitosis, and the model
parameters, which are experimentally accessible.
These correlations can be studied experimentally
(along the lines of Davidson et al. [1999]). Our results
suggest that the shape of the blastula may represent a
checkpoint for gastrulation. The dynamical instability
also may serve to distinguish between Dan’s hypothe-
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Fig. 9. Determination of the cell division plane in the simulation. The
angle «, (shaded area) between its axis a(f) (Fig. 8) and the x-axis
determines the instantaneous orientation of cell 2. In our two-dimensional
model this orientation is optimal if a(f) is tangential (denoted by the dotted
line) to the local radius of curvature r,, constructed according to Fig. 3c.
The optimal orientation of a(f) defines «,,,, the optimal value of a,. We
construct the angle «,,, to ensure that the daughter cells of a cell that has
just divided again fit into the tissue sheet.

sis (Dan, 1960) and ours, because if osmotic pressure is
the major driving force for the blastocoele expansion,
we would not expect an instability to occur.

We hope that with this work we have resolved in part
the problem posed by Bissell and Barcellos-Hoff (1987):
“The concept that shape per se regulates function is
difficult to translate into mechanism: what is needed is
a translation of ‘shape’ into an alphabet of molecules
and discrete steps.”

EXPERIMENTAL PROCEDURES
Monte Carlo Simulation

We used the following algorithms in our simulations.

A. Cell division is implemented by the rule illustrated
in Fig. 8. After each division a chosen cell (see later
discussion) deforms in small steps. We assume its
shape immediately after each division to be a circle
whose radius depends on the number of divisions it
has experienced. We reject steps that lead to over-
lap between adjacent cells (excluded volume effect)
and again attempt to deform the chosen cell. Since
the total cell mass remains constant during cleav-
age, the deformation must preserve the area of the
cell. Therefore R,,, the cell radius after a cell has
performed the m-th division decreases with m as
R,, ~ 1/V/2™. R denotes the radius of a maximally
compressed cell (for the true cell size, see the Ap-
pendix). Accordingly, we choose 5, ~ 1/V2™,
which also ensures that the interaction range 8 does
not exceed the radius of the cell.

B. Each cell reorients toward an optimal orientation
guided by the rotational energy for dumbbell-
shaped cells (see Fig. 9). This rule recognizes the
well-defined orientation of cleavage planes and the
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fact that cells are able to orient their mitotic spin-
dles according to the positions of their neighbors
(White and Borisy, 1983). The specific form of the
rotational energy is given in the Appendix.

C. The simulation chooses a cell randomly and modi-
fies its state by shape deformation (see caption to
Fig. 8), displacement, or rotation. The magnitudes
of these changes are chosen randomly from a uni-
form distribution. If such a modification increases
energy, the cell returns to its original position with
a probability P = 1 — exp( — AV/F;); otherwise
it stays in its new position. Here, AV = V' — V|
where V and V' are the total energies of the entire
cell assembly, respectively, before and after the
change in the state of the randomly chosen single
cell. The energy of a cell configuration contains the
total interaction energy, total bending energy, and
total rotational energy. For cells that perform a
pure random walk, AV = 0 and all changes in the
state of a cell are accepted. F; is a reference energy
(Beysens et al., 1998), analogous to the thermal
energy kgT in fluids or gases (T physical temper-
ature, kz: Boltzmann constant). We assume F to
be of the order of the metabolic energy of a single
cell. Because we do not know its value during blas-
tula formation, it remains a model parameter. (Bey-
sens et al. [1998] estimated F, =~ 105 kcal/mol for
chicken embryonic cells.)

D. In many embryos early cell divisions are fully (or
partially) synchronized: all the cells (or groups of
cells) in the developing organism divide at the same
time and (within a group) are of the same size.
Synchronization may be driven by a chemical whose
concentration shows a wavelike pattern with a
maximum in mitosis (M-phase-promoting factor;
Alberts et al., [1994]). To simulate fully synchro-
nized cell division, we perform cytokinesis, the last
step in the cell cycle, only if all cells of a given
arrangement have arrived at this step. Hence cells
that already have completed mitosis “wait” for cy-
tokinesis until all other cells in the configuration
are also ready for this step. Accordingly, for fully
synchronized cell division, the total number of cells
doubles in each cycle, and immediately after cell
division is completed each cell has the same size.
Hence, the number of cells after the zygote has
performed m cleavages is N = 2™,

Computer

Most simulations employed Pentium 450 processors.
Depending on the choice of parameters, a run took
between 1 and 7 days of CPU time of a single processor.

Units

Our simulations use numbers. To relate these num-
bers to physical quantities requires the introduction of
physical units, that is, a time scale, a length scale, and
an energy scale. As a length scale we have chosen the
diameter of the zygote (50 wm), and as a time scale we
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chose the cell cycle time 7. For the simulations pre-
sented in this work, T = 1 hr. The reference energy F,
discussed earlier provides the energy scale, F; = 10°
kcal/mol. All times, lengths, and energies become mul-
tiples of the chosen scales.

ACKNOWLEDGMENT

This work was supported by the Deutsche For-
schungsgemeinschaft under grant LO 342/4-3 (to D.D.)
and by the National Science Foundation under grant
IBN-9710010 (to G.F.). We acknowledge the hospitality
of the Max-Planck-Institute for Colloid and Interfacial
Science in Golm and the Collegium Budapest, where
part of the work was carried out. We thank an anony-
mous referee for useful comments.

REFERENCES

Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson JD. 1994.
Molecular biology of the cell. New York: Garland.

Beysens DA, Forgacs G, Glazier JA. 1998. Networks of droplets in-
duced by coalescence: application to cell sorting. In: Beysens DA,
Forgacs G, editors. Dynamical networks in physics and biology.
New York: Springer. p 161-169.

Bissell MdJ, Barcellos-Hoff MH. 1987. Influence of ECM on gene ex-
pression. J Cell Sci 8(suppl):327-343.

Dan K. 1960. Cytoembryology of echinoderms and amphibia. Int Rev
Cytol 9:321-367.

Davidson LA, Koehl MAR, Keller R, Oster GF. 1995. How do sea
urchins invaginate? Using biomechanics to distinguish between
mechanisms of primary invagination. Development 121:2005-2018.

Davidson LA, Oster GF, Keller R, Koehl MAR. 1999. Measurements of
mechanical properties of the blastula wall reveal which hypothe-
sized mechanisms of primary invagination are plausible in the sea
urchin Strogylocentrotus purpuratus. Dev Biol 209:221-238.

Dolmetsh RE, Lewis RS, Goodnow CC, Healy JI. 1997. Differential
activation of transcription factors induced by Ca®* response ampli-
tude and duration. Nature 386:855—858.

Drasdo D. 1996. Different growth regimes found in a Monte Carlo
model of growing tissue cell populations. In: Schweitzer F, editor.
Self-organization of complex structures: from individual to collec-
tive dynamics. London: Gordon and Breach. p 281-292.

Drasdo D. Buckling instabilities in one-layered growing tissues. 2000.
Phys Rev Lett 84:4424—-4427.

Drasdo D, Kree R, McCaskill JS. 1995. Monte Carlo approach to
tissue-cell populations. Phys Rev E 52:6635-6657.

Etteshon CA. 1985. Mechanisms of epithelial invagination. Q Rev Biol
60:289-307.

Forgacs G, Foty RA, Shafrir Y, Steinberg MS. 1998. Viscoelastic
properties of living tissues: a quantitative study. Biophys J 74:
2227-2234.

Foty RA, Pfleger CM, Forgacs G, Steinberg MS. 1996. Surface ten-
sions of embryonic tissues predict their envelopment behavior. De-
velopment 122:1611-1620.

Gilbert SF. 1997. Developmental biology. Sunderland, MA: Sinauer
Associates.

Gurdon JB. 1992. The generation of diversity and pattern in animal
development. Cell 68:185-199.

Helfrich W. 1978. Steric interactions of fluid membranes in multilayer
systems. Z Naturforsch A 33:305-315.

Hiramoto Y. 1968. Observation and measurements of sea urchin eggs
with a centrifuge microscope. J Cell Physiol 69:219-230.

Hiramoto Y. 1969. Mechanical properties of the protoplasm of the sea
urchin egg. Exp Cell Res 56:201-208.

Hochmuth RH, Ting-Beall HP, Beaty BB, Needham D, Tran-San-Tay
R. 1993. Viscosity of passive human neutrophils undergoing small
deformations. Biophys J 69:1596-1601.

Kam Z, Minden J, Agard D, Sedat JW, Leptin M. 1991. Drosophila
gastrulation: analysis of cell shape changes in living embryos by

DRASDO AND FORGACS

three-dimensional fluorescence microscopy. Development 112:365—
370.

Leptin M, Grunewald B. 1990. Cell shape changes during gastrulation
in Drosophila. Development 110:73—84.

Lipowsky R. 1991. The conformation of membranes. Nature 349:475—
481.

Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E.
1953. Equation of state calculations by fast computing machines.
J Chem Phys 21:1087-1092.

Newman SA, Comper W. 1990. Generic physical mechanisms of mor-
phogenesis and pattern formation. Development 110:1-18.

Odell GM, Oster G, Burnside B, Alberch P. 1980. A mechanical model
for epithelial morphogenesis. J Math Biol 9:291-295.

Odell GM, Oster G, Alberch P, Burnside B. 1981. The mechanical
basis of morphogenesis. Dev Biol 85:446—462.

White JG, Borisy GG. 1983. On the mechanism of cytokinesis in
animal cells. J Theor Biol 101:289-316.

Wolpert L. 1998. Principles of development. Oxford: Oxford Univer-
sity Press.

Wolpert L, Mercer EH. 1963. An electron microscope study of the
development of the blastula of the sea urchin embryo and its radial
polarity. Exp Cell Res 30:280-300.

APPENDIX

This Appendix gives some details of the mathematics
used in the simulations.

We start the simulations with a single cell, the zy-
gote, whose linear dimensions initially ared, = d, =
d, = 50 p, corresponding to a sea urchin egg imme-
diately after fertilization. Because our simulations are
two-dimensional, cells divide only in the x-y plane, and
their extension perpendicular to this plane stays con-
stant (initial d, = 50 ). Thus, a “real” cell in the
simulations, immediately after cell division has the
shape shown in Fig. 10. During cleavage, the cell elon-

hyaline
layer

Fig. 10. Sketch of a cell with the hyaline layer. The hyaline layer has
a thickness hy = 1 pm. The linear dimensions of the cell in the x, y, and
z directions are, respectively, d,, d,, and d,. Figure 3 shows the projection
of the cell onto the x-y plane and defines the quantities r and 8.
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gates in the x-direction and shortens in the y-direction
(Fig. 8).

Blastula formation conserves total embryo mass, so
the area of a cell in the x-y plane decreases by a factor
of 2 with each cell division. Therefore, immediately
after the m-th division d,(m) = d,(m) = d,.(0)/V2™.

The total energy is

V=V"W4+VB+VE (1)
where V™ is the total nearest-neighbor interaction
energy, VB the total bending energy, and V% the total
rotational energy.

Once contacts have formed, owing to their elastic
properties, cells resist compression or stretching, caus-
ing an elastic contribution to V™. A further elastic
contribution, which we incorporate into V¥V, arises
from the attachment of the cells to the hyaline layer.
The nearest neighbor energy for the composite system
becomes VMV = 2 VNN where V.; is the interaction

ij
energy of nearest neighbor cells i and j:

2d172Rl+R 2
{5
Vi =

if Ri+R=d;=R,+R;+53

« otherwise

(2)

Here d;;(t) denotes the distance between the centers of
the nearest circles of the neighboring dumbbells i and
J. (Consider a figure similar to Fig. 9, where dumbbells
replace circles 1 and 3.) Each dumbbell consists of two
circles of instantaneous radius R(¢) and an axis of
length a(¢) (Fig. 8). A circular cell is a dumbbell with
axis length a = 0. As mentioned, R denotes the ap-
propriate radius under maximal compression. 3 is the
range over which a cell can change its size under ten-
sion or compression.

VN diverges ford,;; = R; + R;andd; = R, +
R; + 8 and has aminimum atd,; = R; + R; + 3/2.
d;; relates to the size of a cell i as follows: the distance
between the nearest circles of dumbbells i and j is
d; — R, — Rj; hence, the size of cell i parallel to its
axis (taken to be the x-axis in Fig. 10) with its left
neighbor i — 1 and its right neighbor i + 1 is

di,i*liRiiRifl

dx = Ri + 9 + a; + Ri
dijv1—Ri— Ry
+ 5 . (3
For a cell i that is neither compressed nor stretched,
di,i—l -R,-R;,_, _ di,i+1 -R,—R; ., - %q
B = B = 4 hence,
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its size parallel to its axis is 2R; + a; + 8/2. Thus,
the true size of a circular cell (a; = 0) depends both on
R,, its radius in its maximally compressed state, and
the range of cell-cell interactions.

The magnitude of 3 decreases with each cell division,
similarly to d, and d,. Thus, after the m-th division
d3(m) = 3(0)/V/2™, and we choose 3(0) = 0.1d,(0) as
an estimate for the range over which a cell can be
stretched or compressed in a certain direction (G.
Yagil, personal communication). The expression for d,,
above, together with the requirement of constant mass,
determines the height d,.

The bending energy is

B 1 ’
V :§E<E_—Ci> 7B (4)

where c; is the spontaneous curvature, r; the local
radius of curvature at the position of cell i, and 283, the
angle between cells; — 1 andi + 1 (see Fig. 3c). The
bending rigidity k, similar to € in Eq. 2, contains the
contribution of both the cell and hyaline layers.

If the stress to which cells are exposed during blas-
tula formation is sufficiently small, we may treat them
as linear springs (Odell et al., 1981) and express € and
k in Egs. 2 and 3 in terms of the material and geometric
properties of the cell and the hyaline layers (as shown
in Fig. 10). Their dependence on the geometry requires
recalculation of k and e after each cell division, so they
both depend on the number of cell divisions m. The
appropriate material constants are the Young’s moduli
of the cell and hyaline layers listed by Davidson et al.
(1995) for the sea urchin. Using these values and the
appropriate geometric parameters, we arrive at €(0) =
7 X 10° keal/mol and k(0) = 5 X 10* kcal m/mol for the
zygote at m = 0.

In order to ensure the correct orientation of the cell
division plane, we assume that cells are able to orient
their mitotic spindle to maintain a one-cell-thick struc-
ture. Our model accomplishes this by introducing the
orientational rotational energy V¥ = 3, VF, with

VE = 0o, = o?)?

(5)

oPt, We set v > 1 to avoid exces-

Fig. 9 defines «; and o
sive deviations of «; from af®".

Finally, the strength of friction that cells experi-
ence in the course of their displacements and orien-
tational changes is expressed in terms of a friction
constant. Its magnitude m (related to the reference
energy F; and the cell diffusion coefficient D as n =
F;/D) is taken from the work of Beysens et al. (1998),
n(0) =~ 11 kg/s.



