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Buckling Instabilities of One-Layered Growing Tissues
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Growth and folding in one-layered model tissue sheets are studied in a stochastic, lattice-free single
cell model which considers the discrete cellular structure of the tissue, and in a coarse grained analytical
approach. The polarity of the one-layered tissue is considered by a bending term. Cell division gives
rise to a locally increasing metric. An exponential and a power-law growth regime are identified. In
both regimes, folding occurs as soon as the bending contribution becomes too small to compensate the
destabilizing effect of the cell proliferation. The potential biological relevance is discussed.

PACS numbers: 87.10.+e, 05.40.–a, 05.45.–a, 87.18.–h
Many growth models have been inspired by biological
systems or can be applied to them, see, e.g., Refs. [1–6].
Most models consider either surface or bulk properties of
more or less compact assemblies of particles (here, cells)
as, e.g., in Eden-like models of tumor [2,3], bacterial [4],
yeast [5], or tissue culture growth [6]. We present here
a novel microscopic growth model where cell division
can take place only within a single cell layer, such that
a one-layered structure is maintained. In computer simu-
lations with this model and in a coarse grained continuum
approach it is shown that the growing layer cannot remain
smooth but must fold by a mechanism that is believed to
be generic, i.e., is independent of model details.

Such situations can occur in all biological cell systems in
which cell division has to maintain a single-layered struc-
ture, e.g., in the basal (lowest) epithelium cell layer (BL)
of the skin [7,8] or in crypts, the cell proliferating units in
the intestine. Strong perturbations of the physiological cell
division in crypts result in strong folding [8,9], producing
patterns analogous to those observed during the formation
of polyps or adenoma which constitute prepatterns of in-
testinal cancer [10].

For simplicity and in order to obtain a clear illustration
of the underlying folding principle, we focus on simple
one-dimensional (1D) tissue manifolds (“cell chains”) in
2D space [11]. Our basic model assumptions are the exis-
tence of attractive nearest-neighbor (NN) interactions be-
tween cells to maintain the integrity of the (one-layered)
tissue sheet, a bending energy that models the stabilizing
effect of cell polarity on a sheet and cell division that al-
lows potential size changes of the sheet. In order to main-
tain a one-cell-thick structure, cells have to be placed in
the sheet again after cell division. Cells grow and divide
only if this does not result in too strong cell deformations
or compressions [excluded volume (EV) effect]. Hence cell
division at a constant rate requires the migration of either
the entire cell layer or of cells within the cell layer. Mi-
gration is assumed to be subject to strong friction. We
consider situations where cells not constrained by the EV
effect divide infinitely often.
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We find that the growth law and geometry of the tis-
sue sheet are determined by the competition between the
destabilizing cell growth (by a proliferation of arc length)
and the stabilizing bending energy of the tissue that locally
confines cell movements perpendicular to the layer.

As a tissue domain grows above a certain size the bend-
ing energy becomes too small to smooth local undulations
that are stochastically created by local fluctuations in the
growth of arc length, and the layer roughens. If this oc-
curs before cell deformations or compressions become so
strong that cell division is hindered, the cell number in-
creases exponentially. This is the case if the cycle time t

is sufficiently large or the bending rigidity k is sufficiently
small. Otherwise the growth law changes to subexponen-
tial growth before folding occurs.

The findings are closely related to the classical Euler
buckling instability by internal strains generated by a
compression of a chain or sheet [12]. In contrast, in one-
layered growing tissues the strain is generated by the
growth of an internally growing manifold.

Below, we first introduce the microscopic model that
shows the crossover between both growth regimes as well
as the folding. The instability within each growth regime
is explained in an analytical approach afterwards.

The basic unit in the microscopic model is a single cell.
Each cell is assumed to be spherical directly after cell divi-
sion and deforms during mitosis into a dumbbell (Fig. 1a,
Ref. [13]), i.e., actively changes its “equilibrium shape.”
To each configuration a (“total”) energy is assigned accord-
ing to V tot �

P
i,j VNN

ij 1
P

i Vbend
i 1

P
i V rot

i . VNN
ij

summarizes NN interactions that result from the com-
petition between attractive interactions, due to adhesion
molecules anchored in the cell membranes, and repulsive
contributions, first from the limited cell deformability and
compressibility, and second from the loss of membrane
steric entropy. We choose [14]

VNN
ij �

Ω
e�� 2d̃ij �t�

d 2 1�2 2 1� if 0 # d̃ij�t� # d ,
` otherwise.

(1)

Here, d̃ij�t� � dij�t� 2 2R�t�. For the definition of R see
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FIG. 1. (a) Cell division algorithm: During growth, a cell de-
forms from a spherical shape into a dumbbell by elongation of
the axis from a � 0 ! a � 2R. (b) r2 is the local radius of
curvature for cell 2, and b2 is its curvature angle. During de-
formation, cell 2 attempts to orientate its axis into the direction
of the local tangent to the circle in point P2 (dotted line).

Fig. 1. dij denotes the distance between the nearest circles
of the neighboring dumbbells i and j (a circular cell is a
dumbbell with axis length a � 0). VNN

ij has a minimum
for d̃ij � d�2. The lower cutoff at d̃ij � 0 models the
EV effect. d determines the range over which a cell can
be stretched or compressed in a certain direction and is
estimated to d � 0.2R. e . 0 measures the resistance
against deformations. Throughout this article, e � 10.

We introduce polarity by assuming that an anisotropic
distribution of cell adhesion molecules gives rise to a bend-
ing energy Vbend

i in addition to VNN
ij :

Vbend
i �

1
3

i11X
j�i21

k

2

µ
1
rj

2 cs

∂2

rjbj . (2)

k is the bending rigidity, cs is the spontaneous curvature,
rj is the local radius of curvature, and bj is the local angle
of curvature (Fig. 1b). cs can be dropped in 1D closed
geometries (see Ref. [15] and below).

To guarantee that a one-cell-thick sheet is maintained we
introduce the energy contribution V rot

i � g�ai 2 a
opt
i �2

with g ¿ 1. The angles ai describe the momentary and
a

opt
i describe the “optimal” orientations of the cell axis.

The orientation of the axis of a nonspherical cell is as-
sumed to be optimal if it coincides with the tangent to the
local radius of curvature (Fig. 1b). This ansatz is moti-
vated by the observation that cell division in many tissue
sheets is directed, e.g., during early embryogenesis [16],
in the crypt and the skin, suggesting that cells are able to
detect the position of their neighbors in order to determine
the direction of their division.

Active cell deformations during mitosis cause a pres-
sure on the neighbor cells in the direction of the deforma-
tion. This leads to an increase of the total energy V tot.
We assume that the neighbor cells either move their center
of mass or change their orientation in order to minimize
V tot. We further assume that (i) inertial terms are small
compared to dissipative terms and (ii) processes not ex-
plicitly considered, such as the cell metabolism, intracel-
lular movements of the cytoplasm, and the reorganization
of the cytoskeleton, give rise to a stochastic component
in the displacement of the cells. Although growth is in-
trinsically a nonequilibrium problem we have modeled the
dynamics by the Metropolis method which corresponds
to the numerical integration of a master equation [6,17].
This may be justified by noting that after each growth step
all cells move to relax the configuration, at least into a
local equilibrium [6]. In the simulations, cells are ran-
domly chosen to perform either a small translation �øR�,
orientation change �øp�, or growth �øR� trial. Each
translation or rotation is accepted with probability Pa � 1
if DV tot � V tot

t1Dt 2 V tot
t , 0 and with probability Pa �

exp�2DV tot�FT � if DV tot $ 0 (hence isolated cells move
diffusively in accordance with Ref. [18]). t is the time,
and Dt is the time between two migration or rotation tri-
als (� 1 in the simulations). FT is a “metabolic energy”
[19] and the kBT analog in cellular systems (T , tempera-
ture; kB, Boltzmann constant). It can be absorbed into a
redefinition of e, k, and g by e � e�FT , . . . . A growth
trial is accepted only if it does not result in too strong cell
deformations, i.e., if dij . 2R. Between two growth tri-
als a cell performs ng ¿ 1 translation and rotation trials.
A cell not subject to any EV interactions has an average
cycle time t ~ ng. If EV interactions occur some growth
trials are rejected and the real average cycle time becomes
tR $ t. In the simulations we vary k and t.

In 2D space, one may distinguish between two ideal-
ized, extremal situations, a cell configuration with fixed
ends at x1, x2 (Fig. 2a) and a closed arrangement (Figs. 2b
and 2c). As U . x2 2 x1 (U, arc length of the cell chain),
the stretched configuration becomes curved because the
minimum free energy configuration as well as the nonequi-
librium configurations (Fig. 2a) become curved. As ex-
amples of curved configurations we focus in the following
on closed and hence intrinsically curved cell geometries
(Figs. 2b and 2c). In each simulation we start with a cir-
cular configuration of eight cells.

For small times t the circumference U and the total
number of cells N grow exponentially fast, i.e., U ~ N ~

exp�lt� with l � t21 ln�2� (Fig. 3a) [20]. As the time
proceeds the configuration roughens and forms a regular
pattern of undulations at still exponential growth if k is
small (Fig. 2c). If k is large, first the growth law changes
from an exponential to a power law N ~ t1�2 with a cycle

FIG. 2. (a) Buckling instability in a stretched cell configura-
tion with fixed ends (k � 100, left: N � 100, right: snapshots
at N � 110). The larger is t the larger are the folded domains.
(b) Instability in a circular growing cell arrangement, time evo-
lution at N � 8, 16, 32, 64, 128, and 256 for t � 8.3 3 103

and k � 2000 (cf. Fig. 3b). (c) Snapshots for N � 512, t �
3.3 3 106 (cf. Fig. 3a, points A and B). The larger is k the later
folding occurs and the larger are the folded domains.
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FIG. 3. Circumference U in units of 2R 1 d�2 vs t�t on a (a)
lin-log and (b) a log-log scale. (a) The smaller k and the larger
t the longer is the initial exponential regime (squares: ~ 2t�t).
At sufficiently large U a buckling instability occurs (e.g., for
t � 3.3 3 106 at A: k � 20, B: k � 100). (b) For large k and
small t, first the growth law changes from an exponential to a
power law (~ ta with a � 0.5). For large t, the curve is bent
upwards, indicating a buckling instability. The smaller k and t
the smaller is the domain size at the buckling instability [A,B in
(a), arrows in (b)].

time tR . t. Then also in this regime a buckling insta-
bility occurs (Fig. 3b; see also Fig. 2b). The instabilities
occur at typical domain sizes that grow with t (Fig. 2a; ar-
rows in Fig. 3b) and k (Fig. 2c; points A and B in Fig. 3a).

The nature of the geometric instability can best be un-
derstood in a simplified continuum model. By connecting
the middle points of the cells in a given configuration we
arrive at a closed curve in 2D space. As in Ref. [21] we
parametrize the curve by the position vector r�a, t� where
a [ �0, 1� is a parameter, and t is the time. r�a, t� and
its first two derivatives are periodic in a. The mechanisms
which contribute to the dynamics are (a) local prolifera-
tion of arc length due to cell divisions, (b) stabilization of
stretched structures by a bending energy, and (c) constant
(at least on the average) circumference if cell division is
switched off. We consider only cell configurations near
the instability, where intersections of the curve with itself
cannot occur. Then,

z
≠r�a, t�

≠t

Ç
a

� 2
1
p

g
dF

dr
. (3)

z is the friction density. g � ≠ar�a, t�≠ar�a, t� is the
determinant of the metric tensor. The prefactor 1�pg
ensures reparametrization invariance. F � F0�a, t� 2
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0 L�a, t�pg da, where L�a, t� is a Lagrangian multi-

plier field which ensures that the condition for the local
proliferation of length, specified below, is fulfilled. F0 �
�k�2�

R1
0�c�a, t� 2 cs�2pg da is the bending energy.

c�a, t� is the local, and cs the spontaneous curvature. cs

can be absorbed into a redefinition of L � L 2 �k�2�c2
s .

To get a closed set of equations, we have fixed a con-
dition for the time evolution (the growth) of the local
metric by

≠t
p

g � ≠ar≠a≠tr�
p

g � sk
p

g c2k (4)

with k � 0, 1, . . . . In the exponential growth (EG) regime,
k � 0, while in the power-law growth (PG) regime, k � 1.
sk . 0 measures the strength of growth. s0 ~ t21. The
choice of k � 0 ensures exponential growth of the metric;
the choice of k � 1 can be shown to correspond to a nor-
mal growth velocity Gn ~ c and to a transversal velocity
Gt that obeys the relation ≠aGt � 0. In polar coordinates,
r�a, t� � r0�t� 1 j exp�v�q�t 1 i2pqa� and L�a, t� �
L0�t� 1 h exp�v�q�t 1 i2pqa� (q � 0, 1, 2, . . . ; index
“0” denotes angle-independent variables). The homoge-
neous equation reads ≠tr0 � skr122k

0 , hence r0 ~ es0t for
EG and r0 ~

p
t for PG.

To link this with the computer model, note that, for
EG, cells can freely divide, hence N ~ exp�lt� ~ U �R1

0
p

g da. For homogeneous growth, U � 2pr0. If, as
for PG, a cell is jammed between its right and left neigh-
bors it can grow only if it previously had moved such that
free space for its next growth step is provided, i.e., if it
moved into the angle interval b ~ c (for b ø p) (see
b2 for cell 2 in Fig. 1b). Hence in a homogeneous con-
figuration an increase of r0 occurs according to �r0�t 1

Dt� 2 r0�t���Dt ~ b ~ 1�r0 �r0 ¿ R�, resulting in the
observed growth law.

A linear stability analysis in the coarse grained approach
around the homogeneous growing circle (where r deter-
mines the dynamics of L) yields

v�q� � 2
Aq2�q2 2 1�2

q2 1 1
1

B�q2 2 1� �q2 2 1 1 2k�
q2 1 1

(5)

with A � k��r4
0 z �, B � sk�r2k

0 . For q2 ¿ max�1, 2k 2

1�, v�q� � 2Aq4 1 Bq2 as, e.g., for particular cases of
dendritic [22] and molecular beam epitaxial growth [23].
If no growth occurs �sk � 0� the circle is the only stable
solution. Otherwise, v�q � 0� � s0 . 0 for EG, so ho-
mogeneous deviations grow. For PG, v�0� � 2s1�r2

0 , so
homogeneous perturbations are damped out. v�q � 1� �
0, i.e., a translation of the circle is marginally stable [15].
v has a second zero at q2

c � X for k � 0 and q2
c �

�1 1 X 1 ��1 2 X�2 1 8Xk	0.5��2 for k . 0, with X �
B�A � zskr422k

0 �k. For 1 , q , qc, v�q� . 0. For
q ! `, v�q� , 0; i.e., short wavelength perturbations
are damped out. The fastest growing mode is q2

m � X�2
(if qm ¿ 1). qc and qm grow with increasing X. The
buckling instability occurs at domain sizes ~ q21

c which
decrease with increasing growth strength and decreasing
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bending rigidity, in agreement with the tendencies found
in the computer simulations. At the instability the bending
energy does not suffice anymore to smooth the roughen-
ing effect of the cell proliferation. A decrease of the cycle
time has the same effect: the “time” between two subse-
quent cell divisions does not suffice anymore to smooth
local undulations. For PG, cells at positions with larger
than average local curvature have a smaller than average
mitotic cycle, and thus divide faster than cells at positions
with smaller local curvatures. This further increases the
difference in the local curvatures in a self-enhancing pro-
cess resulting in a folding of the domain. For EG, the in-
crement in the metric is proportional to the metric already
proliferated.

The folded structures are not in equilibrium: for the 1D
ring structures, the undulations regress if the cell division is
suppressed. There is no contribution due to shear. Also 2D
buds formed in 3D may reorganize into a perfectly smooth
layer on large time scales and reduce shear energy. This
line of argument is supported by observations which show
that cell assemblies can behave as viscoelastic fluids: un-
der compression between two plates, cell assemblies first
deform followed by a reorganization of the cells in order to
reduce elastic energy contributions [24]. A separate experi-
ment identified cells to diffuse even within cell aggregates
[18]. However, growth in a 2D surface for some cases is
expected to be at least temporarily accompanied by shear
stress that elevates the energy barrier for the instability, but
is not expected to change its nature.

This folding mechanism may be present in all one-
layered epithelial tissues including those embedded in soft
connective tissue during development or the maintenance
of tissue if the cycle time or the tissue bending stiffness
become sufficiently small (the latter, e.g., by weakening
the cytoskeleton) either by internal or external stimuli. An
example may be the postirradiational situation in crypts
[8,9]. Crypts form pear-shaped pockets in the intestinal
wall [25]. They are responsible for the maintenance of the
high cell turnover in the intestine. After x-ray irradiation
the cell proliferation stops for a short time followed by a
period of very rapid cell division. This leads to an increase
of the crypt size and fingerlike instabilities in the floors or
walls of the crypts, indicating that the cell migration is
no longer able to balance the cell division. Folding can
also be observed in other geometries. After administration
of the growth factor, the cell proliferation increases in the
skin of the mouth accompanied by a thickening of the skin
and stronger undulations of the BL (where most divisions
occur) [7,8]. The (extra) buckling may indicate that the in-
creased cell proliferation is no longer balanced by the cell
migration out of the BL; the thickening that the cell loss
into the oral cavity is too slow.

As shown in [26] for blastula formation, all simulation
parameters can be related to experimental quantities.
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