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Abstract. Handling missing covariates in longitudinal mixed effect models is
demonstrated on a medical example.
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1 Introduction

Regression models for longitudinal data with fixed and random effects for the
covariates are investigated. One aim of statistical analysis is the determination of
those covariates which have a significant influence on the response or which lead
to a good model fitting.

Values of the response variable may be missing at random and we assume that
the parameters of the data model and the parameters of the missingness mechanism
are distinct, e.g. for the response variable the missing-data mechanism is ignorable
(Schafer (1997)). If all covariates are complete, the observed-data likelihood can
be utilized. But if covariates are missing it is intractable and multiple imputation is
one possibility. Neither this method nor the EM algorithm, should be examined
here. In my opinion the best way to handle missing covariates is the use of Markov
Chain Monte Carlo (MCMC) methods to estimate the model parameters. As a
result the missing covariates are estimated together with the whole model from a
sample of the posterior distribution using non-informative priors for these. The
analysis with complete covariates and the MCMC method with missing covariates
is demonstrated on a medical example.

2 Statistical modelling and medical example

The examined model is a mixed effect regression model for repeated
measurements with missing response values:

yi=XiB tu;t+g

where y; is an n; column vector of the response variable for case i, X; is an n; x p
design matrix with the values of the p covariates, § is a p column vector of -
regression coefficients assumed to be fixed, u; are random intercepts, which are

assumed to be independently distributed across subjects with u; ~ N(0, 62), ¢; is the




440

within subject error with g; ~ N(0, W), where W, for within, is a covariance matrix
—n;Xn;.

The aim of a prospective study was to evaluate the usefulness of clinical
parameters, laboratory tests and immunogenetic markers as predictors of an erosive
course of joint disease early in rheumatoid arthritis (RA). 96 patients with
persistent oligio-or polyarthritis over a period of six weeks and a history of disease
of less than 2 years were enrolled in the study. As one major outcome parameter of
the destructive process, radiological evaluation of joint erosions was used. At study
] entry and at each scheduled visit, hand and feet radiographs were taken and scored

using the Larsen score. As response for statistic modelling, changes in the Larsen
score in the first (96), second (96), third (72) and fourth (54) year of observation
were used. In parentheses the number of measured changes in the Larsen score is
specified. Because the study is going on, the missing values of the response
variable can be treated as ignorable.

Since the goal of the analysis was the identification of prognostic parameters,
initial values of the covariates documented at study entry as well as the values
obtained after 6 months of observation and therapy were used. In the preselected
model (Table 1) only rheumatoid factor IgA (RfIgA) has two missing values.
These missing values are also handled as ignorable.
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3 Markov Chain Monte Carlo methods

MCMC methods are generic simulation methods. The unknown parameters and
the missing values get prior distributions, mostly noninformative e.g. N(0, 10°) for
location parameters and Gamma(10”, 10”) for each precision, which is the
- reciprocal of variance. Using Bayes’ theorem the posterior density is proportional
to prior times likelihood. In case of noninformative prior densities the posterior
density results in similar estimations as likelihood function does. Therefore a
sample from the posterior density is used, when the observed-data likelihood is
intractable. The most important MCMC method is the algorithm of Metropolis and
Hastings (Robert, C.P., Casella, G. (1999)) with the Gibbs sampler (Gilks, W.R.,
and Roberts, G.O. (1996)) as special case. The Gibbs sampler can be used if it is
possible to sample from the conditional densities of each parameter given all other
‘parameters and the data.
By using WinBUGS the joint posterior must be conjugate or log-concave.
Otherwise, they are discretized. The Gibbs.Sampler, after reaching stationary
distribution, can be used for inference.

4 Modelling and results for the medical example

4.1 Complete covariates analysis and selection of the covariance structure
Mixed effect regression models were calculated with S-Plus 2000 for all cases with
complete covariates. The stepwise term reduction began for a model with the initial
values documented at study entry as well as the values obtained after 6 months of
observation and therapy as covariates for fixed effects.
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Table 1. Parameter-estimator (with p-value in parenthesis) for the pre-selected model,
models with other covariance-structure and the BUGS-model

Pre- Conditional | Conditional WinBUGS
selected independent | independent model
model + random model
,—1 slope
E estimator estimator estimator Estimator: median
; (p-value) (p-value) (p-value) (95% credible
interval)
3 intercept 12.46 13.34 13.32 13.31
. Fixed (<.0001) (<.0001) (<.0001) (8.53, 18.27)
'] effects DRd4epi 2.87 2.74 2.77 2.80
(0.0087) (0.0069) (0.0059) (0.84, 4.73)
tint -2.92 -3.31 -3.30 ' -3.28
(0.0006) (0.0004) (0.0004) (-5.10, -1.56)
Sex -7.69 -9.11 -9.05 -8.86
(0.0014) (0.0019) (0.0012) (-14.21,-3.72)
RflgA 0.0095 0.0114 0.0107 0.0094
(0.0162) (0.0021) ] (0.0032) | (0.0026,0.016)
Sex:tint 2.11 2.72 2.70 2.65
(0.0245) (0.0075) (0.0080) (0.75, 4.67)
Random intercept 3.06 4.21 2.29 2.32
effects: (0.35, 3.70)
standard slope 0.74
deviation  Ip e al 7.08 6.97 7.10 7.18
(6.55, 7.90)
Corre- 15 -0.237
time T4 0.158
intervals T2 0.007
T2q 0.102
T34 0.556
LR-Test to cond. ind. 0.0406 | 0.3434 -
model: p-value
AlC 2165 2168 2166
BIC 2218 2206 2196
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: S9_me interactions were also included. The stepwise deletion of parameters (biggest
g D-value first), that had no effect on the yearly increase of Larsen score leads to a
Epreselected model. In this example the Akaike Information Criterion (AIC: -2 log-
_ P * 2) and the Bayesian Information Criterion (BIC: -2 log-likelihood
D * log(number of cases)) are minimized, too. Table 1 shows the preselected
odel in the first column. Conditional on the selected covariates and the random
ercept the correlations between time intervals are nearby zero (exception ri4).
it makes sense to use a conditional independent model (Table 1, third

n). This is equivalent to the compound symmetry form for the total
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covariance matrix. The conditional independent model is worse for the log-ratio-
test (p=0.04) but better in BIC. The fit of both models is equally good, therefore
the more simple conditional independent model should be preferred, which is
analysed with WinBUGS below. The second column shows that an additional
random slope is not necessary, because AIC and BIC are worse.
4.2 Modelling with MCMC methods for missing covariates

Fig 1 shows a directed graph for the model created with WinBUGS. The graph is a
special case of the general relation

yi ~N(XiB+u ,0’I)

based on the following distributions and equations:

yi = (larsd;; , larsdy, , larsd;; , larsdy) T

XiB=0ay + bytint, + by Sex; + bs Sex; tint, + b, DR4epi; + bs RfIgA;,
B=(oo ,bi,by,b3,bs,05)7, tint=(1,2,3,4)7,

Y = 0,0, Hix = XiB+u,

larsdy ~ Normal( p;,, 1), larsdj, ~ Normal(0, 10'6) for missing larsd
%, by, ..., bs ~ Normal(0, 10°), t ~ Gamma(10™, 107),

o ~ Unif(0, 10), a; ~ Normal(0, 1),

RfIgA,; ~ Unif(0, 1000), RfIgA4s ~ Unif(0, 1000) .

In contrast to the notation N(i, 6%), Normal(y, t) means here and in BUGS normal
distributed with expectation p and precision 1, which is the reciprocal of the
variance. The fixed effects are the constant oy , the slope in time by, and the other
factors b, to bs for the covariates. All these get as prior a noninformative normal
distribution.
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name: mu(i.k] tyoe: logical link: identity
value: alpha0 + sigmaf * alphafi] + b{1] * zintfk] + b{2] * Sex{i] + b[3] * sexzint(i,k] + b{4] * DR4epili] + b(5] * RfIgA(i}

=

-\

\ N
\ Sexiil DR4epili] |f” RfigAfi] @ m
for(IN 1:5)

tint[k]

for(k IN1: 4)

for(iIN 1 : N)

| Fig 1. Graphical model of the rheumatoid arthritis data

The factor o, is the standard deviation of the random intercept. Therefore the o
are standard normal distributed. The factor o, and both missing values of RfIgA
get as prior a noninformative uniform distribution. The yearly change in Larsen
score (larsd) is modelled as normal distributed. As prior for T is chosen a
noninformative conjugate distribution, namely a gamma distribution.

Table 1 shows in the last column the result of 50 000 iterations after a “burn in”
of 1 million iterations. Because only two values of RfIgA were missing, the
conditional independent model with complete covariates and the BUGS model are
rather similar. ‘

In the BUGS model, the progression of disease is indicated by a yearly baseline
increase in the Larsen score of 13.31, that is described by the intercept. The
influence of time indicates that this increase decreases by 3.28 yearly. The
presence of an RA associated DRB1*04 allele had the strongest impact on
progression resulting in an additional yearly increase in Larsen score of 2.8. In
addition, the level of RFIgA measured at study entry had a significant influence on
the yearly increase in Larsen score. There was a gender difference with men having
a higher yearly increase of 8.86 compared to women. However the interaction with
time interval shows that this increase decreases by 2.65 yearly.

A remarkable benefit of the MCMC methods is the ability to calculate credible
intervals for random coefficients. A crucial advantage of MCMC methods is the
Possibility to calculate robust models by other distributions e. g. double exponential
for the error term.
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The results show that for data with missing covariates the use of MCMC methods
can be recommended.
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