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Abstract—Iinference based on the proportional hazards model is discussed in the presence of long-
term survivors. The model is formulated as a cure model yielding an improper survivor function.
An algorithm is proposed to fit the proportional hazards model restricted by the fixed survival rates
at the end of observation period. A parametric cure model is used to estimate the proportion of
long-term survivors. To combine the stability of the parametric method with the flexibility of the
nonparametric one, the survival function is estimated nonparametrically conditional on the cure rates
provided by the parametric analysis. The methods are applied to the data collected in clinical trials
on Hodgkin's disease. (© 2001 Elsevier Science Ltd. All rights reserved.
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1. INTRODUCTION

Time to relapse or freedom from treatment failure is an endpoint used in many cancer clinical
trials when evaluation of the efficiency of primary therapy of cancer is of interest. Usually the
semiparametric proportional hazards (PH) model [1] is used to estimate the treatment effects. A
usual approach is to characterize the difference between the treatment groups by the hazard ratio
which is captured by the Cox’s partial likelihood, the other model parameters being treated as
nuisance. However, when cure is a possibility, estimation of the cure rates in different treatment
groups in addition to their ratios might provide a better summary of the therapy effects.

Given the cumulative hazard H(t), the population survivor function G is represented in the
form

G(t) = exp {-H(t)},

where H(t) = fot h(z)dz and h(t) is the hazard function. Whatever the cure model, the popula-
tion survivor function G(¢) is improper. That means that the cumulative hazard is bounded

H() <6,  lim Ht)=o. (1)

A convenient way to adjust for the above property is to consider H(t) = 8F(t), where F(t) is
the distribution function of a nonnegative random variable. If 4 is related to the covariates or
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treatment groups while F' is treated nonparametrically, we get an alternative parameterization
of Cox’s model with an improper survivor function

G(t) = exp {-0F(t)} - (2)

This formulation calls for a likelihood which would allow one to estimate the cure rates without
having to estimate the other nuisance parameters (F) jointly. If censoring is of Type I, the
probability of cure can simply be estimated by the proportion of censored observations from a
homogeneous sample. Within the framework of the PH model under Type I censoring, a marginal
likelihood has been suggested which allows to estimate the cure rates [2], if covariate information
is available. It is noteworthy that the ranks marginal likelihood is no longer the same as Cox’s
partial likelihood if cure is a possibility.

If the hazard ratio is of primary interest, Cox’s semiparametric PH model is preferred to a
parametric model because of its high flexibility and relative efficiency [3-5]. Although a para-
metric model is fully efficient (if correctly specified), overall it is not appreciably better than the
robust Cox’s model {6).

However, the semiparametric PH model is less efficient than a parametric one as far as esti-
mation of cure rates in absolute terms is concerned [7]. A distinct advantage of the parametric
approach is its stability when estimating the cure rates. For example, if the last observation is
uncensored, the Kaplan-Meier estimate of the cure rate from a homogeneous sample becomes
zero. Much like the Kaplan-Meier estimate (see also [8]), a nonparametric estimate of survivor
function under proportional hazards is unstable close to the end of the study. It is not uncommon
that a difference in the estimates of survival in a number of treatment groups at the end of the
study is misinterpreted even if the difference is not significant. A misclassification of the cause
of failure in unclear cases and composed endpoints might also be a part of the reason for the
instability.

Another point is that the nonparametric estimate is unable to extrapolate the survivor function
beyond a limited observation period. While the nonparametric model estimates the cure rates
by the proportion surviving at the end of the study, the parametric model extrapolates beyond
the observation period, thus reducing the bias associated with the limited observation period.

The above observation calls for methods that would resolve the bias versus variance (and/or
stability) tradeoff combining the advantages of both the parametric and the nonparametric ap-
proaches.

In an attempt to marry the stability of the parametric estimation of the cure rate with the
flexibility of the nonparametric estimation of the survival function, we use the parametric ap-
proach to estimate the cure rate, and then estimate the function F nonparametrically as if the
cure rate were known. We restrict ourselves to a k-sample problem. Extentions to other designs
are trivial.

2. ESTIMATION OF CURE RATES
UNDER A CONTINUOUS MODEL

Along with model (2) with a parametrically specified F [9], there exists a variety of other
parametric cure models. Most them are of the mixture type. The simplest model of this type
would assume that the population is divided into two subpopulations due to some unobserved
prognostic factor, so that an individual is either a long-term survivor with some probability or has
a proper survivor function otherwise [10]. More complex approaches proceed by assuming that
the unobserved heterogeneity is described by a random variable (r.v.) as following soine mixture
distribution which assigns a positive probability to some value corresponding to infinitely large
time to failure. The population survivor function is then given by an expectation taken with
respect to the frailty [11-13]. It is remarkable that model (2) can be simultaneously interpreted
hoth as a mixture model, as well as a simple model of carcinogenesis {9,14-16]. According to the
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carcinogenic interpretation, the observed tumor originates from clonogens that have a random
progression time X with the distribution function (d.f.) F. It is assumed that the number v of
such clonogens in a patient is Poisson distributed with parameter 8. The observed tumor onset
is associated with completing of the progression by one of the competing clonogens, so that the
tumor onset time U is given by
U= min X, (3)
i=0.....v

where X;, i =1,2,..., is the time for the i*" clonogen to produce a detectable tumor (progression
time). The variable Xj is set to oo by definition, since v = 0 corresponds to the absence of the
disease. Let X;, i =1,2,... be independent and identically distributed with the d.f. F. Given v,
we have S(t; v) = [1—F(t)]”. If the number of clonogens in a patient could be measured, we would
have a PH model with the baseline cumulative hazard Ho(t) = —log(1 — F(t)), Hy(co) = oc.
Since v is unobservable, we take an expectation over the frailty and obtain expression (2) for the
population survivor function. When interpreted in the mixture context, model (2) is a particular
case of the model by Aalen [13], which assumes a compound Poisson distribution for v.

Suppose that the ordered times to failure assume the values ¢; on the time axis, i = 1, ... \ 17,
to =0, tny1 = 00. Let m;; be the number of failures at ¢; in the treatment group j =1,...,k,
and n;; be the number of censored observations. Denote by 0,5 =1,...,k, the value of 9 in the
treatment group j. The probabilities of cure are then given by exp(—0;). The likelihood of the
data under a continuous model can be written as

n k
o= > {mulog[6f (t:)] — (mij + nyj) 6;F (£.)}, (4)
i=1 j=1
where f is the probability density corresponding to F. From the score equations

0¢, ,
'8—0;—0, j—l,...,k,

we get the MLE for 8; in the form

=M

n — n )

Z (171,'3' + ?l,‘j) F(ti) Z R,'J'AF,'
i=1

i=]

=

- M.
6 2 (5)

where A is the number of failures in the treatment group j, R;; is the number of patients at risk
at t; — 0 in group j. Here and in what follows, we assume AV; = |V (t;) - V(t;i_1)|, Vi = V(t:),
for any function V. Let S; be the survivor function corresponding to the time to censoring event
in group j. Let us rewrite estimate (5) in the form
6 = _ M;6;
(M; + N;) 21 (Rij6;/ (M; + N;)) AF;
i=

) (6)

where 8; is the true value. We shall have in probability as n — oo

o<
Tt AF, /G-S.-tG-tdFt=P~f'l in group j},
2 L, + N AF = [ 855G, (¢ dF(6) = Pr{failure in group .

where NV; is the number of censored observations and G ; is the survivor function of the time to
failure in group j. Also, M;/(M; + N;) — Pr{failure in group j}. Thus, 8 is consistent. If the
true survivor function is a proper one, the estimate 8 will be infinite as 1 — oc, since the true
value of @ is infinite.
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A closely related estimate for 6 has been suggested by Klebanov and coauthors [17] within the
framework of the statistical decision theory. The idea was to find a survivor function G which
Ininimizes the risk of the estimator given by the expectation of the loss function

- o 2
L&) =6 / [G(t) - G(t)] dt.
0
In minimizing L, the function F was treated as known. The solution in the class of estimators

invariant with respect to the choice of a measurement unit for ¢ has the form

—(ALj+1)
F(t)

éj(t) = |1+
Y (myj +ny) F(ty)
i=1

(7)

in the treatment group j. It is clear that according to (6) the second term in square brackets
in (7) becomes infinitely small in probability as n — oo if 0; < oo, and we get the MLE éj as
the first term of the Taylor expansion of (7). A parametric method can be used to estimate F by
maximum likelihood as if the sought-for survival function were in form (7). However, the two
estimates (7) and the “pure” MLE éj are almost identical in practice [9]. This observation gives
one more reason to use the MLE (5) to estimate the cure rate.

3. RESTRICTED ESTIMATE OF SURVIVOR
FUNCTION GIVEN THE CURE RATES

In order to estimate F nonparametrically, we treat it as a step-function and use § as estimated
from a continuous model, following the usual line of reasoning with the PH model. The generalized
likelihood of the data on the class of step-functions acquires the form

n k
L= {mi;log[AG;;] - ni;8;F}, (8)
i=1 j=1
where AG;; = Gj(ti-y) — Gj(t;) and F,, = 1. Let us consider ¢; as a function of AF;, i =
l,...,n—1, where AF, =1 — Z?:_ll AF;. To obtain the maximum likelihood estimate of F, the
likelihood £y is maximized with respect to AF;, i = 1,...,n — 1. This is accomplished by the
following numerical algorithm.

e Define the functions y; = ¢;(z) as solutions to the following equations (solved nuineri-

cally):
Zk:__fj_"ﬁ.__=i{m._m C—n _,}+Zk: M ;6; (9)
= 1~ exp {-6;u:} e ! Mo o 1-exp{-6;2}
t=1,...,n~1.

o Solve the equation
n-—1

.I‘+Z<,:‘,j(.'t) =1. (10)
i=1

Let z* be the solution of (10). As a result of the above estimation procedure, we have

AF; = ¢ (z*), i=1,...,n—1, AI:'T,,=:L".

It can be shown that the above algorithm indeed finds the maximum likelihood estimator for F.
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ProoF. Using the method of Lagrange multipliers, consider unrestricted optimization of the

likelihood "
by=1t4+ A (1 —ZAF,-)

i=1
with respect to the independent variables AF;, i = 1,...,n, and A. Taking the derivatives, we
obtain the equations

3£d ) n
— = = [ AF = 1.
3AF, A=0, i1=1,...,n, and k2=1 &
Expressing A as A = a_ggﬁlf’ we obtain the score equations
04y 04y .
— . —= = =1,...,n—1, 11
3AF, 9AF, - % i=lenm (11)

to be solved simultaneously with the equation
n
Y AR =1. (12)
i=1

It is easy to see that equations (11),(12) take the form of (9),(10), respectively, y; and z replaced
by AF; and AF,, respectively. Solution of the score equations (11) defines the increments A F;,
i=1,...,n—1, as functions p; of AF,,. Consider the function ¥(AF,) = AF, +Z?=_ll wi(AF,).
It is easy to show by induction that 1 is an increasing function. Besides, ¥(0) = 0 and ¥(1) > 1.
Therefore, the equation ¢(z) = 1 has the unique solution *. We thus obtain the sought-for
estimates as AE; = wi(z*).

4. JOINT ESTIMATION OF 6 AND F

The full PH model (2) can be fitted by iteratively applying the algorithm of the previous
section and solving (5). This approach has much in common with the one usually used to fit the
PH model: estimation of regression parameters is carried out under a continuous model by the
partial likelihood, with the subsequent plug-in estimation of the survivor function [3].

An approximation 1 — exp(—6AF) ~ §AF can be used if the size of the sample and/or the
probability of cure exp(—#6) is large. In this case, we get

Y, mij
J

AF; = 13
i 20] [R,, - 'ITL"]' - nnj] + Z m"j/AFn ( )
3 J
instead of (11). From (5) and (13), we derive
Z mi;
M=), : (14)

i 1+ [Z mnj/AFn — 20] (mnj +n,,j)] /ZBJR,J
J J 3

Note that the right part of (14) is monotonic in AF,, and therefore, the unique solution is given
by AF, = Z]. Mn;/ zj 6;R.;. On substitution in (13), we get

k
Z m,-_,-

AFiz’:l—, i=1,...,n. (15)

2 0iRi;

i=1
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Excluding AF; from (5) and (15) results in

Yomy,
M; r -
6 ZR SR,

which is a score equation for the Cox’s partial likelihood adjusted for ties. It remains to choose
the free parameter 6; in (15) to satisfy the constraint >, AF; = 1.

Finally, we note that estimate (15) multiplied by 6; is just the Breslow’s estimate for the base-
line hazard [18], where “baseline” refers to the treatment group 1. In the absence of covariates,
this estimate turns into the Nelson-Aalen one.

5. EXAMPLE

We shall compare two estimation methods for the two-sample problem.

METHOD A. Estimate the PH model parametrically. Fix 8; as based on the parametric model
and reestimate the survivor function under the restriction given by the parametric cure rates.

METHOD B. Alternatively, we use a conventional approach. Estimate the ratio 65/8; by the
partial likelihood. Fix the ratio 62/6; as estimated from the partial likelihood and then estimate
the survivor function nonparametrically.

In the subsequent analysis, use was made of the International Database on Hodgkin’s Disease
(IDHD) collected at 15 cancer centers and five cooperating groups (see the Appendix). The
data set includes records of 14315 newly diagnosed patients with HD treated between 1960 and
1987. Patients of all disease stages were included if older than 15 years. The majority of patients
were less than 60 years of age. A wide variety of treatment strategies ranges from involved
field irradiation in Stage I to intensive combined modality treatment in Stage IV. Over 85% of
the chemotherapy regimens used were MOPP-like not containing adriamycin. The records also
contained follow-up data for each patient including date of relapse, death, cause of death. We
refer the reader to [19] for other details.

Consider two groups of patients with respect to the type of primary treatment. Patients
assigned to the Group 1 received radiotherapy alone (RT), while those assigned to the Group 2
received MOPP-like chemotherapy. To specify the parametric form of F, we use the Weibull
distribution. The results with F specified as Gamma distribution were very similar, and therefore,
they are not presented here. Since the IDHD dataset is very large, the IDHD-based Kaplan-Meier
estimates will be thought of as being the true curves. The parametric PH model was fitted to the
freedom from relapse IDHD data (Figure 1a). Although there is some discrepancy between the
estimates, the cure rates provided by the parametric method (0.73 and 0.61 in the two groups,
respectively) are only about 0.01 biased as compared to the Kaplan-Meier estimates (0.73 and
0.60, respectively). To test the robustness of the method, we create a late failure perturbed
sample. The curves shown in Figure 1a are bootstrapped with 200 patients in each group under
the additional Type I censoring at time 100 (months). Then a single censored observation at
t = 100 in Group 1 is turned into a failure and moved a small amount to the right. Method A
estimates practically do not change. We see in Figure 1b that estimate B is deranged by the late
failure perturbation.

Bootstrapping the curves given in Figure 1 with 1000 replicates, and varying group sizes, we
estimated the variance of the §;-estimates as given by Methods A and B. As is seen in Figure 2,
Method A is preferable within a wide range of sample size encountered in the practice of clinical
trials.

Apart from the experiment shown in Figure 1b, we have encountered a similar situation when
comparing the relapse free survival in patients treated by a conventional chemotherapy and in
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Figure 1. Analysis of the IDHD data on relapse free survival.
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(b) SF1, SF2—the curves provided by Method A in the two groups (GHSG vs.
EBMT). COX1, COX2—the curves based on partial likelihood (Method B). See text
for explanations.

Figure 3. Analysis of the GHSG and EBMT data on relapse free survival.

patients who have undergone a high dose chemotherapy with subsequent autologous bone marrow
transplantation to restore the hemopoiesis [20]. The transplanted treatment group (2) was taken
from the European Bone Marrow Transplantation (EBMT) register. The similar patients treated
conventionally (assigned to Group 1) were taken from the clinical trials of the German Hodgkin’s
Lymphoma Study Group (GHSG). Shown in Figure 3a are the Kaplan-Meier curves in the two
groups together with the parametric curves as based on the PH model. We notice an unexpected
behavior of the Kaplan-Meier curve in the first group. From Figure 3b, we see that Method B is
much more susceptible to this instability, while the method A still provides a reasonable curve.

APPENDIX

LIST OF STUDY CENTERS AND PRINCIPAL
INVESTIGATORS INVOLVED IN THE IDHD

e British National Lymphoma Investigation (BNLI), London, U.K.: M.H. Bennett,
B.W. Hancock, K.A. MacLennan, B. Vaughan Hudson, G. Vaughan Hudson

e EORTC Lymphoma Cooperative Group: P. Carde, J.M. Cosset, M. Hayat, M. Henry-
Amar, J.H. Meerwaldt, R. Somers, J. Thomas
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Stanford University Medical Center, U.S.A.: R.S. Cox, R.T. Hoppe

e Princess Margaret Hospital, Toronto, Canada: D.E. Begrsagel, G. DeBoer, M. Gospo-
darowicz, S. Sutcliffe .

¢ Southwest Oncology Group (SWOG), U.S.A.: C.A. Coltman, S.J. Dahlberg

e University of Texas M.D. Anderson Cancer Center, Houston, U.S.A.: D.O. Dixon,
L.M. Fuller, F.B. Hagemeister

e Royal Marsden Hospital, London, U.K.: S. Ashley, A. Horwich

e St. Bartholomew’s Hospital, London, U.K.: W. Gregory, T.A. Lister

* Grupo Argentino de Tratamiento de la Leucemia Aguda (GATLA), Argentina:

S. Pavlovsky, M.T. Santarelli

Universita di Pavia, Italy: P.G. Gobbi

Joint Center for Radiation Therapy, Boston, U.S.A.: N.C. Coleman, P. Mauch

Finsen Institute, Copenhagen, Denmark: N.I. Nissen, L. Specht

Fondation Bergonié, Bordeaux, France: F. Bonichon, H. Eghbali, B. Hoerni

German Hodgkin Study Group, Germany: V. Diehl, D. Hasenclever,

M. Loeffler, M. Pfreudschuh

Groupe Pierre et Marie Curie, France: H. Eghbali, A. Najman, R. Zittoun

Christie Hospital & Holt Radium Institute, Manchester, U.K.: D. Crowther, R. Swindell

The Institute of Oncology, Ljubljana, Yugoslavia: V. Pompe Kirn, M. Vovk

University of Minnesota Health Science Center, Minneapolis, U.S.A.: D.M. Aeppli,

C.K.K. Lee, S.H. Levitt

* University of Nebraska, Omaha, U.S.A.: J. Anderson, J.O. Armitage

e Yale University, New Haven, U.S.A.: S. Dowling, C.S. Portlock

e & ¢ o
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