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Abstract. A novel method is presented which allows the estimation of the velocity of
migrating cells from positional 3HTdR labelling data in spatially organized epithelial
tissues. In a continuum approach, wave-like profiles of labelling index (LI) data, which
travel away from the basal layer, are followed and compared with experimental LI
profiles. The method yields estimates of migration velocity, cell flow, and turnover
time. Results for the ventral tongue mucosa in a group of 55 BDF1 mice that were
labelled at the same time of the day and culled at different time points within a 24-h
period have been analysed. The results show a strong circadian rhythm in the migration
velocity and the related parameters.
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INTRODUCTION

In the first of a series of four papers on oral mucosa Potten et al. (2002) investigated the cell
kinetic properties of the murine ventral tongue epithelium. They observed rapid changes in the
labelling index after 3HTdR pulse labelling and in the mitotic activity through a 24-h period.
Here we present a more detailed analysis of some of their data. Our primary interest is in the
spatial organization of the tissue, in particular in the cell flux into the suprabasal cell layer from
the basal cell layer. A review of the data reveals a contrast between a relatively time invariant
pattern of positional cell density (many cells near the basal layer, gradually fewer at larger
distance), a rapid dynamics of label travelling through the tissue and a pronounced circadian
rhythm of cell division. It is our aim to obtain quantitative insight into the transition of cells from
the basal cell layer to the suprabasal layers and the velocity of cell migration through the supra-
basal layer. The motion of the cells cannot be observed directly. However, modelling methods
can yield some quantitative information. Here we describe a novel method to estimate migration
velocities from the observed positional frequencies of labelled cells followed with time after a
pulse label. The methods and applications are general but will be illustrated for the murine oral
mucosa dataset.
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MATERIALS AND METHODS

The experimental procedure used to investigate the oral mucosa was described by us in Potten et al.
(2002). Briefly, 55 animals that were not influenced by irradiation or chemical substances were
labelled with 3HTdR at day 0 at 15.00 h. They were culled 40 min, or 2, 4, 6, 8, 12, 16 or 24 h later.
Sections of the oral mucosa of the ventral tongue were prepared and investigated with the Axio-
home microscope system to obtain a morphometric analysis (see Potten et al. 2002 for details).

Data acquisition
For each animal, five areas of observation were defined and evaluated. For each cell identified
by its nucleus, the position of the nucleus in a given two-dimensional co-ordinate system, the
state of labelling (labelled/nonlabelled), and the location relative to the basal cell layer (basal /
nonbasal) were recorded.

Spatial cell distribution
To obtain an insight into the spatial distribution of cells an analysis was performed separately for
each sectioned area. For each cell the nearest distance from the basal cell layer, x was calculated.
Discrete cell positions were defined by choosing an interval of ∆x = 10 µm and defining for
I = 0, 1, … , 8

Inti = {x|i · ∆x ≤ x < (i + 1) · ∆x}. (1.1)

Using W as the width of the area under observation, we define the (empirical) cell density
at position i as:

(1.2)

In an analogous way the positional density of labelled cells is defined by

(1.3)

and the ratio of both density functions is the positional labelling index

(1.4)

In a second step, the results were aggregated for all areas of animals that belong to the same
treatment group, i.e. with the same time span from labelling to culling. Means, standard deviations
(SD) and standard errors (SEM) were calculated. Additionally, because of only slight variations
of the cell density profile over a 24-h period, a normalized profile of cell density was calculated
by averaging over all areas under investigation.

The kinematic migration model
In our model, the distance x from the basal cell layer can vary continuously, so the cell density
is formally defined for each value of x ≥ 0 by
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(1.5)

The data show an exponential decrease in the cell density ρ with increasing distance x.
Therefore, it will be justified in this special case to consider density–distance relationships of
the special type

ρ(x) = ρ0 · e
−λ·x. (1.6)

The motion of cells is described by a position-dependent velocity function u(x). According
to the measurements (see below) it is assumed that ρ(x) does not change with time. Thus, it is
reasonable to assume the same for u(x).

The simplified geometry of a microscopic section preparation as it is realized by the model
can be seen in a sketch in Fig. 1. The basal layer is a straight line of length W. x describes the
position relative to the basal cell layer. The narrow shaded rectangle on the right side is a hypo-
thetical region of points with distance X within the interval x ≤ X < x + ∆x. The position of the
left borderline, x, and the width of the rectangle, ∆x, are chosen arbitrarily, but ∆x is assumed
to be small. Influx into and outflux from this region will now be considered. After a time span of

all cells from inside the rectangle will have moved outside to the right. Their number must be
the product of the cell density and the area of the rectangle, i.e.

ρ(x) · W · ∆x = ρ(x) · u(x) · W · ∆t. (1.7)

Because of the postulated time independence of the cell density, the same number of cells
must have moved into this rectangle from an adjoining rectangle of the same width on the left side,
i.e. from the basal cell layer side, so the flow of cells, i.e. the number of cells that move through
a vertical line at position x related to the time span under observation per width W is given by

I = ρ(x) · u(x), (1.8)

and has the same value for all positions x (condition of continuity). Consequently, the velocity
u has to change with the position x according to
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Figure 1. Sketch of a microscopic section through a polarized epithelial tissue. Vertical line at the left side: basal cell
layer. W, width of the section; x, co-ordinate; position, distance from basal layer.
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(1.9)

If the cell density decreases exponentially (equation 1.6), the velocity has to increase
exponentially:

(1.10)

The density of labelled cells, ρl(x,t) can be defined by analogy to the cell density. Because
of the time-dependent outflow of labelled cells from the basal cell layer, the model must allow
variations of ρl(x,t) with time t. The same holds for the positional labelling index

(1.11)

The flow of labelled cells can change with time. However, regarding the narrow rectangle
mentioned above, a difference in numbers of entering and leaving labelled cells must result in
an equal change in the number of labelled cells within it. Under these conditions, we derive the
following partial differential equation (PDE) for the positional labelling index in a streaming
tissue, which is the central model equation:

(1.12)

This PDE can be solved analytically using the method of characteristics, which yields the
general solution:

(1.13)

where f(τ) is an arbitrary well-behaved function of τ. If the cell density l(x) decreases exponen-
tially, equation 1.13 reduces to

(1.14)

This can be interpreted by analogy to a plane wave as a profile of LI that moves in the x
direction and, because of the exponential increase of the velocity, undergoes distortion.

In order to obtain a solution of the PDE that applies to a specific problem, the general solution
has to be restricted by initial and boundary conditions. The initial condition states that LI(x,t) at
time t = 0 has to be identical with a given initial profile LIinit(x):

LI(x,0) = LIinit(x), (1.15)

whereas the boundary condition demands that LI(x,t) at position x = 0 has to follow a given time
course LIborder(t):

LI(0,t) = LIborder(t). (1.16)
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Both LI(x,t) and LIborder(t)  have to be estimated from observations. Obviously the function
f(τ) has to be chosen as

f(τ) = LIborder(τ). (1.17)

An explicit calculation of LI(x, t) can use the analytical solution (1.17) thus avoiding numer-
ical solving methods.

Estimation of the model parameters
The measured values of the positional cell density can be used to specify the function ρ(x).

As was mentioned above, a plot of empirical values indicates that the positional cell density
decreases exponentially with distance from the basal layer (Fig. 2), so equation 1.6 is an appro-
priate model equation with two parameters ρ0 (cell density at position 0) and λ (logarithmic
decrement) that can be estimated by nonlinear regression. Consequently, the migration velocity
increases exponentially (equation 1.10). The value of the parameter u0, however, cannot be
derived in this way.

Provided that the kinematic model describes the movement and distortion of LI profiles in
an appropriate way and given a provisional value of u0 (e.g. by making a guess), it is possible
to predict the shape of a LI profile at a time point tend if the shape at an earlier time point tbegin
is known. Actually, LI profiles were measured at times tj = 0, 2, 4, 6, 8, 12, 16, 24 h ( j = 0, 1,
… , 7) for discrete positions xi , so it is possible for all time intervals [tj, tj+1] ( j ≤ 6) to use the
experimental profile at time tbeg = tj as a starting profile from which a theoretical profile at time
tend = tj+1 can be calculated. The latter can be compared with the experimental profile at the same
time tj+1. The degree of coincidence depends on the provisional value of u0. A good guess should
produce similar profiles. To make this fitting concept work, one has to define a measure of
difference between observed and theoretical profiles. Following Press et al. (1992), one calculates
the weighted sum of the squared differences between observed LI values and the corresponding
model values. One has to sum up over all observed positions xi and to use the reciprocal squared
errors of the observed LI values as weight. (The method will be demonstrated with actual data
in the Results section.) Therefore, by defining a measure X 2 according to

(1.18)

Figure 2. Cell density profile of the ventral tongue mucosa.  Averaged 275 areas scored from 55 mice. Abscissa, distance
from basal layer; ordinate, cell density. Error bars: measured values, mean ± SEM. Curve, exponential regression line
ρ = ρ0 * exp(–λ*x), parameters ρ0 = 33 300 ± 2500 cells/mm2, λ = 0.0780 ± 0.0057 µm−1.
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and using a minimization algorithm, a value of u0 that makes X 2 minimal can be found. This
value is an estimate of the mean migration velocity at position 0 during the time interval [tj, tj+1].
We used the Levenberg–Marquardt algorithm, which is implemented in the program system
Mathcad 2001. Therefore, repeating this procedure for all j = 0, 1, … , 6 the velocity at position
0, u0 and the flow I = ρ0 · u0  can be estimated for all time spans between neighboured time
points of observation.

RESULTS

Profile of the cell density
As Fig. 2 shows, the cell density profile in the oral mucosa can be described by an exponential
distribution (equation 1.17). Using the method of nonlinear regression with the empirical
variance of ρi values as a weight function, the estimated values of the distribution parameters
were ρ0 = 33 300 ± 2500 cells/mm2, λ = 0.0780 ± 0.0057 µm−1. ρ0 is in accordance with the
directly observed empirical cell density of 32 450 ± 720 cells/mm2 in the 10 µm-interval adjoining
position 0. As a consequence of equation 1.17, the local cell density at the position

(2.1)

is only 50% of the density at position 0, i.e.

(2.2)

and the logarithmic decrement λ can be replaced by the more transparent half-value depth xh
with a value of 8.89 ± 0.65 µm. Furthermore, the fraction of all cells which are located between
positions 0 and an arbitrarily chosen xmax is

(2.3)

which means that 50% of all cells are between positions 0 and xh, but 98.4% between 0
and 6 · xh = 53.4 ± 3.9 µm. This is in accordance with the observed average thickness of
51.1 ± 1.1 µm.

Profiles of the labelling index
The observed sequence of LI-profiles at increasing time intervals after pulse labelling is shown
in Fig. 3a and the corresponding set of time courses at different positions in Fig. 3b. These
graphs are derived from the data presented in Potten et al. (2002), Fig. 1.

Circadian variation of cell migration (velocity u0) from the basal to the suprabasal 
cell layer
For each of the six time intervals between two consecutive measurements, an estimate of u0 was
calculated by minimizing the distance measure X2. In Fig. 4, the method is demonstrated for the
first time span (0–2 h after labelling). The resulting values of u0 are given in Table 1, column
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Figure 3. (a) LI profiles vs. position at different times after labelling. mean ± SEM. Panel strips: time, h. (b) Time
course of LI at different positions, mean ± SEM. Panel strips: position, µm.
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Figure 4. Demonstration of the method of fitting parameter u0. The experimental LI profile (closed circles, connected
by the broken line, measured at the start time tbeg) is the same as in Figure 3a, left panel in the first row. Assuming a
starting value of u0, a shift and distortion of this profile can be calculated. Each closed circle shifts to the right (�) or
disappears beyond the right border and a model profile under the assumption of a specific choice of u0 is constructed
(�, connected by the full line). The observed profile at time tend , which is the same as in Figure 3a, right panel in the
first row, is represented by (�) connected by dotted lines. The fitting procedure searches a value u0 that minimizes the
distance measure between the theoretical (model) profile and the observed profile at tend (thick vertical bar).

Table 1. Estimates of migration velocity u0, the cell flow I, and the cell production rate r for different time intervals
after labelling and averaging
  

  

I From To u0 (µm/h) I (cells/mm/h) r (%/h)

0 15.00 17.00 0.85 28.2 12.7
1 17.00 19.00 1.06 35.5 15.9
2 19.00 21.00 0 0 0
3 21.00 23.00 0.03 0.9 0.4
4 23.00 03.00 0 0 0
5 03.00 07.00 0.56 18.7 8.4
6 07.00 15.00 0 0 0
Mean 0.26 8.5 3.8

Figure 5. Estimated migration between the basal and suprabasal cell layer over one day (velocity parameter u0).
Abscissa, time after labelling; ordinate, value of u0.
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4. Figure 5 summarizes the results for the estimates of the cell flux leaving the basal cell layer
and entering the suprabasal cell layer. We identify two activity peaks over 24 h.

From the velocity parameter u0, two other parameters of biological interest can be derived
(Table 1, columns 5 and 6). One is the cell flow I = ρ0 · u0  according to equation 1.10. The
second is the rate of cell production (movement from the basal layer) which is given by

(2.4)

Furthermore the number of basal cells per top line width W can be estimated to 222.5 ± 2.9
cells/mm.

Mean migration velocities
If one is interested only in parameter values which are averaged over the whole 24-h period, one
has to take the different lengths ∆t(i) into account by calculating weighted means, so the mean
velocity at position 0 can be calculated accordingly to be

(2.5)

resulting in a value of

Calculating the mean flow in the same way leads to I = 8.5 cells/(mm · h). The mean cell
production rate resulting is ® = 3.8%/h. From the latter a mean transit time of

through the suprabasal cell layer is deduced.

Estimating wave fronts
By using the model and the estimated individual values of u0, one can follow up the positions
of distinct fronts of the LI. Within the time intervals and a constant value of u0, a front with the
initial position xbeg at time tbeg moves according to

(2.6)

For a period of a whole day or several days, the movement within each subinterval has to be
matched. In Fig. 6 this is was done for a period of two days for fronts starting from positions of
0, 2, … , 18, and 20 µm, respectively. As can be seen, a cell starting from the basal cell layer
(position xbeg = 0) leaves the system after 48.7 h while cells starting from suprabasal positions,
such as 10 or 20 µm, leave the suprabasal layer already after 15.6 or 2.9 h. Hence this estimate
implies a surprisingly short time interval that cells survive if they are placed at high positions
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in the suprabasal layer. Figure 6 also illustrates that the mean transit time for cells entering
the suprabasal cell layer at the bottom (position 0) to reach the top (position 50) is about 50 h.
About 1 day will be spent on travelling from position 0 to position 10, while 1 day is needed to
reach the top positions from here. The major reason for this acceleration of cell migration
is the continuous increase of the mean cell sizes and the accompanying decline of (nuclear)
cell density.

DISCUSSION

The model described in this paper was developed because of the need for quantitative informa-
tion on the spatial migration of cells in spatially organized polar tissues, which cannot be
observed directly. The method uses positional index data obtained at various (narrowly spaced)
time intervals after a pulse label. Furthermore, it needs data on the spatial cell density along the
axis of cell migration. Because of the large number of positional data obtained for oral mucosa
(see Potten et al. 2002) a continuum approach could be chosen. Zajicek and his coworkers
(Zajicek 1986, 1995; Zajicek & Arber 1991) have modelled polarized tissues as regions of
streaming fluids. A direct connection between their work and our investigations, however, does
not exist, so, to our best knowledge, no comparable attempt to estimate the velocity of migration
has been made.

We applied the method to analyse cell migration in the oral mucosa. A special mechanical
property of the oral mucosa is the position-dependent cell density. According to the actual data,
we restricted ourselves to simple exponentially decreasing functions. As equation 1.13 shows,
more general types of density profiles described by monotonically decreasing functions are
compatible with the framework of the model. Because of the continuity equation, a local decrease
in the density is always accompanied with a local increase in the velocity. It should be noted that
the analogy with the mechanics of streaming fluids is incomplete because here no attempt was
made to introduce mechanical forces. Therefore, the model is purely kinematic, not dynamic.
Nevertheless, given the positional distribution of cells as an empirical fact, it is possible to
derive consequences for the velocity.

A crucial point is the assumption that all, or at least most, of the suprabasal cells have a
nucleus so that all cells remain visible in the microscopic section provided that their nucleus is
situated in the plane of cutting. An alternative assumption could be that the cells gradually lose

Figure 6. Change of position during cell migration. Abscissa, time after labelling; ordinate, distance from basal cell
layer. The curves show the movement of cells away from the basal layer dependent on their starting position at time 0.
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their nuclei as they migrate so that they become invisible but continue to exist. As a conse-
quence, the observed exponential decrease in nuclear density according to equation 1.6 is the
result of loss of nuclei in the cells according to kinetics of first order, namely

(3.1)

with a rate constant k and a half-value time of

(3.2)

Because at the same time the cells move in the x-direction with a uniform velocity u, the
logarithmic decrement λ depends on the rate constant k and the velocity u according to

(3.3)

Furthermore, in contrast to equation 1.14 the positional index LI(x,t) now has the general
form

(3.4)

where f(τ) is an arbitrary function of τ. Therefore, all points of the LI profile move with the same
velocity u so that the form of the profile remains unchanged.

If one speculates that the cells move over a distance of 50 µm in 50 h and λ = 0.078 µm−1

as before, the migration velocity is u = 1.0 µm/h at all cell positions x, the rate constant is
k = 0.078 h−1, and the half-value time is t1/2 = 8.9 h. This would mean that 50% of the cells
which have migrated over a distance of 8.9 µm have lost their nucleus. Actually, we cannot
believe that the observed decrease in nuclear density over a range of several orders of magnitude
is only because the cells have become invisible. It cannot be excluded, however, that cell accel-
eration and nuclear loss take place in parallel. It remains unclear how to quantify their relative
importance.

The analysis of the oral mucosa suggests that there are two periods of migration activity, i.e.
a rapid migration at 15.00–19.00 h, a moderate migration at 05.00–09.00 h and no migration
in the interim intervals. A comparison with the results of Potten et al. (2002, Figs 2 and 3) shows
concordance with the times of maximal basal labelling index, which fall into the periods
mentioned above, whereas the single maximum of the mitotic index falls into the first period.

Similar circadian-dependent variations in cell migration have been reported for the gastro-
intestinal system (Qiu et al. 1994). However, the method of these workers failed when we tried
to proceed in this way with the oral mucosa data. The reason was probably the strong decrease
in the cell density in the oral mucosa in contrast to the approximately position-independent
cell density in the crypt.

We also tried to estimate the basal cell production rate and basal cell turnover time with a
method that we developed for the investigation of changes in the murine epidermis after a
mechanical stimulus (Potten et al. 2000). In this two-compartment approach, the steepness of
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the time course of the normalized number of labelled cells in the combined basal–suprabasal
compartment is a measure of the cell production rate in the basal layer. This is correct under the
assumption that cell divisions occur only in the basal layer and that the number of labelled cells
increases only by division of labelled cells. The data, which were the same as above, yielded a
cell production rate of r = 13.6%/h and a turnover time of

with the unrealistic consequence of three successive cell cycles within one day. Potten et al.
(2002) came to the same result when they observed an amplification in the basal labelling index
within 24 h by a factor of approximately 8 = 23. This was interpreted as a delayed uptake of
3HTdR from a long-term intracellular thymidine pool. The model presented here can effectively
adjust for such overlaying effects. For each time interval, the start profile is treated as an external
input into the model and the end profile is regarded as a reference dataset.

In an independent approach Potten et al. (2002) derived from their data on vincristine
accumulation a basal turnover rate of 54%/day, which is equivalent to a turnover time of 44.4 h,
so at the moment, the estimates of the turnover time are scattered over a fairly wide range.
The model which is presented in this paper uses positional information not as an artefact but as
reality.

A major biological finding of this analysis is the increasing cell migration velocity through
the suprabasal layer. This is directly related to the increase in cell sizes. Biologically this implies
that well-organized and rapid processes must exist to integrate the cell remnants into the epithe-
lium surface. Furthermore, minor perturbances of the cell size development may grossly effect
the epithelial organization.
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