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Abstract

A new proposal is derived for multiple comparisons with repeated measurements. It
is based on previous papers by Kropf (2000) and Kropj; and Lduter (2002), where
multiple comparison procedures are given for a set cof Hependent variables in the
parametric one-sample problem. All hypotheses, i.e. all pairs of repeated measurements
of interest, are ordered according to a data-dependent criterion and then tested
sequentially in t tests for paired samples as long as significance occurs at the unadjusted
error level. To obtain a suitable order of the hypotheses and hence a powerful procedure,
a compound symmetry structure should approximately be given. The application is
demonstrated with data from a prospective study for patients suffering from rheumatoid
arthritis. The properties of the procedure are demonstrated in simulation experiments
showing good results especially for small samples.

AMS Subject Classification: Primary 62J15, Secondary 62F03, 62F07, 62F35, 62H15,
62H10 and 62-07.
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1. INTRODUCTION

Frequently a response variable is measured over several treatment conditions or
periods of time. We consider the situation with a fixed set of measurements per
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individual, usually reférred to as repeated measures situation. Particularly, we deal with
the following multivariate Gaussian model:
X5 B Op s O
x;=| ~N,‘(p,E), T I D e i (4]
X jk Hi Cp " Ok
for j=1,...,n iid sample vectors consisting of the k generally dependent measurements

Xjis i=1..,k of the response variable. In many applications, a compound

symmetry structure can approximately be assumed for the covariance matrix Z, where all
diagonal elements (variances) are equal and also all non-diagonal elements (covariances)
arc equal. In this paper, we do not need this assumption to derive the null distribution of
the test statistics, but we will utilize this approximate structure to attain a high power in
the tests. ; :

In this situation, usually a multivariate analysis of variance is applied as a test for
global effects over the different treatments or periods of time. Under the compound
symmetry assumption, one can alternatively use a univariate ANOVA test (Timm,1980).

In addition to the test of the global hypothesis Hy: Ky =MWy =:--=H,, standard

software packages typically consider orthogonal contrasts, such as Helmert contrasts or
polynomial contrasts. If these contrasts are orthogonal, then the corresponding test
statistics are independent from each other under the compound symmetry assumption.
Nevertheless, it remains the problem of multiple testing because several tests are carried
out to break down the original single question of differences among the & situations.

The so-called experimentwise error rate of a multiple comparison method is the
supremum of the probability of making at least one type I error in all decisions of the
procedure over all possible parameter configurations (cf., e.g., Hsu, 1996). The simplest
way to ensure this experimentwise error rate is the Bonferroni adjustment, where each
single test of the procedure uses the local level o/m for m simultaneous tests. Frequently,
especially for nonlinear curves, the user wishes to carry out all pairwise comparisons and
then o/m may be small.

Subsequently an alternative procedure for multiple comparisons is developed. As in
the well known principle of testing a-priori ordered hypotheses (Maurer, Hothorn and
Lehmacher, 1995), where the order is established on the basis of prior knowledge or
experimental conditions, we want to test the hypotheses sequentially at the full o level as
long as significance can be attained in this order. However, we want to derive the order of
hypotheses from the data themselves without introducing o adjustment techniques. A
data-driven order of hypotheses is also. used in Holm’s (Holm, 1979) procedure, where
the variables would be ordered for increasing P values in the local tests. But then the P
values have to be compared with the critical values a/m, a/m-1),..., ie, an a

adjustment occurs. L
Here, we utilize an alternative proposal by Kropf (2000) and Kropf and Liuter
(2002) for ordering the hypotheses. It considers tests for the univariate hypotheses
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H;:u;, =0 (i=1,..., k) in the above Gauss model '(1), i.e., the points in time are
considered separately, not the differences among them:

®  The k conditions are ordered for decreasing values of i x Jz' for i= 1 ck
) =

® In this order, the usual ¢ tests for the hypothesis p, =0 are applied at the full

 levelaas long as all tests are significant. ‘

This procedure keeps the experimentwise error rate & even in the case of unequal
variances at different points in time. The proof is given in the above papers utilizing
results from multivariate analysis based on spherical distributions (Fang and Zhang,
1990; Liuter, Glimm and Kropf (1998). However, the assumption of equal variances is
necessary in order to have an indication for a convenient order of hypotheses, and hence
for the power of the multiple procedure. :

The theorem is now applied to the compadrisons between different time points.

2. NEW PROPOSAL FOR PAIRWISE COMPARISONS OF DEPENDENT
SAMPLES
We consider the p=k(k-1)/2 pairs (1,2), ..., (k -1,k ) of different points in time
and calculate the corresponding differences dy=x, “Xy25eee, d gy =xj'_,‘_, =X, for

each sample vector X, (J=1,..,n). =

Altemativeiy, one could select special pairs which are important to compare in a
study. A typical example is the many-to-one situation. Then p would be smaller. All other
statements in the subsequent text are valid for this reduced test situation as well.

For j=1,...,n the vectors (djl""’djp ) are inde_pendcnt from each other and
have a multivariate normal distribution with expectation (©;,..,6,)'. Under the
additional compound symmetry assumption for the vectors x 7, the p components of the
vector of differences have also equal variances. Therefore the above theorem is

- applicable for the hypotheses 8, =0, / = L,..., p, resulting in the following procedure:

® Order the p differences of time points for decreasing values of id},-,
=

I=1..,p.

® In this order, carry out the usual one-sample ¢ tests for the difference values or,
equivalently, the usual ¢ test for paired samples to test the hypotheses 6, =0,
I'=1,..., p atthe full level a as long as all tests yield significant results, Stop at
the first non-significant result. Dependent on the practical problem, the tests
may be one-sided or two-sided.
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This procedure is referred to as ‘sequential ¢ tests’ in this paper. It keeps the
experimentwise error rate a. The resulting order of hypotheses may be useful because

id}, /n=£~§-!-s,2 +dj for each [ = 1,..., p. Therefore with equal variances for all
J=1
differences, the order of hypotheses is mainly determined by the mean differences. Pairs
of time points with large mean differences and hence large ¢ values should be in the front
part of the ordered sequence of pairs.

~ If the compound symmetry assumption is not met with the data, then again the
procedure keeps the experimentwise error rate a nonetheless, but the power of the
procedure may be insufficient.

3. EXAMPLE

The data of the following example are from a prospective clinical study of patients
with recent-onset theumatoid arthritis to examine the relationship between inflammatory
disease activity and joint destruction in follow up, and to evaluate prognostic markers for
severe joint erosions early in the disease (Schuster, 2000). Patients with a disease
duration of less than 2 years were included into the study. Variables of clinical and
laboratory disease activity were monitored. Here we show sequential data on the fraction
of a,-globulins in the serum protein electrophoresis (given in % of total serum protein

concentration), a parameter associated with the acute phase response in inflammatory
diseases.

Figure 1. Alpha-2 globulin values in the sample data (mean = std dev)

14

-
~

Alpha-2 globulin [%]
2

1 3 5 7 9 11 137 15

Number of consultation

200

Schuster and Kropf



Multiple Comparisons with Repeated Measurements Schuster and Kropf

The proposed multiple procedure is demonstrated on a subsample of 12 patients from
this study. We selected these patients because they had complete values of a , -globulin
over 15 consultations. During the first 6 months of observation, patients were seen
monthly, and later in 8-week intervals.

Figure 1 depicts means and standard deviations of o, -globulin over the 15 time
points. As seen in this graph, the values decrease in the first 6 months and remain, more
or less, unchanged later on. :

Table 1 shows a selection of all pairwise comparisons. All 105 possible pairs of time
points have been included in the procedure, but not all of them are presented in the table.
The rows, corresponding to the different pairs of time points, are ordered according to

R SRR e 7 R SRR Cant by Ao lemiey e S il o vt S e et e 2w W Rl e

n
the criterion Z df, (last column). In the selected pairs, all mean differences are positive,
Jj=1
reflecting the decrease in the means of the first few time points, Combining the mean
differences with the corresponding standard errors, the P values in the paired f tests can
be derived (5* column). ’

Table 1. Results of the proposed sequential procedure in the rheumatoid arthritis data

A Ser. Time Mean Std. P value in Order
no. points difference | error ‘1 test criterion

| 1 1-6 2.75 0.78 0.0047 171.0
*' 2 1-10 3.23 0.54 0.0001 163.9
: 3 1-12 2.98 0.65 0.0008 163.4
4 1%4% 2.73 0.70 |~ 0.0026 154.2

5 128 2.60 0.71 0.0039 © 148.3
6l o 2.81 0.60 0.0006 141.7

7 1-13 2.64 0.61 0.0012 133.1
8 LS 2.26 0.72 | .-.0.0094 1294
9 1-15 232 0.69 0.0062 126.6
10 1-14 2.47 0.60 0.0017 120.6
11 1573 1.78 0.78 0.0441 119.4

12 1-11 2.20 0.68 0.0077 118.5

13 174 2.05 0.72 0.0154 118.1
14 2-10 2.26 0.56 | _ 0.0019 102.4
15 2:412 2.02 0.63 0.0086 101.4

16 2 0.97 0.73 02144 82.3

17 2 -13 1.68 0.59 0.0163 79.8

18 3-12 1.20 0.68 0.1047 78.1

19 3:10 1.44 0.62 0.0396 75.3

I
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Without any adjustment for multiplicity of the pairwise comparisons, 30 of all 105
pairwise tests are significant at the 0.05 error level, while 19 are still significant at the
0.01 level. In the proposed sequential procedure we can state P values less than 0.01 for
the first 10 pairs of time points, ensuring the differences at the experimentwise error level
0.01 for these pairs. The 1 1" pair gives a P value of 0.0441, stopping that series. But until
the 15™ pair, still the 0.05 level is ensured. The 16" position (pair 1 - 2) gives a P value
of 0.2144 and finishes the series of significances. Despite of small P values in later rows,
no significance can be shown for the subsequent pairs at the experimentwise error level.
Thus, a differcnce in the alpha-2 globulin level in 15 pairs of time points can be observed.
In contrast, with the Bonferroni-Holm procedure only one comparison would give
significant differences at the 0.05 error level (pair 1 - 10).

4. SIMULATION EXPERIMENTS

Of course, the data of the above example may be influenced by chance. In order to
check the preferences of methods as found in the example, simulation studies have been
carried out taking over some basic parameters of the example but not all. In all simulation
series, a variable has been measured at 15 time points for each individual. The variance at
each time point is 1. A correlation coefficient of 0.5 is assumed for all paxrs of
measurements from different time points.

In the first series, the sample size varies from 6 through 12 up to 18 (Figure 2). The
expectation of the variable of interest has been set to 0 for the first 13 measurements in
time and to p for the other two ones (‘two-stage profile’), where p varies from 0.0 to
3.0 (for n=6) or to 2.0 (for n=12 and for n=18) in steps of 0.1 on the axis of
abscissas of the figures. The probability of rejection for a non-null hypothesis at the 0.05
a level is given on the ordinate. In this depicted constellation, 26 out of the 105 pairs of
dependent variables have a difference of expectations unequal to zero (as long as
n>0)). Because of the equal pairwise correlations among all variables, all of these 26
pairs should be detected with the same probability. Therefore, this probability is
estimated as number of detected pairs out of these 26 pairs, divided by 26 and averaged
over 100,000 simulation runs. The corresponding results are given for the ‘local ¢ tests’
(i.e., without any adjustment for multiple testing), for the ‘sequential ¢ tests’ proposed
here and for ¢ tests embedded in ‘Holm’s procedure’. <

Naturally, the uncorrected ¢ tests have the highest rejection rates, startmg at the type I
error level for u =0 and rapidly increasing to values short below 1 for rising values of
1. But the experimentwise type I error rate in the remaining 105-26=79 pairs of
variables (not shown in the figure) is at least 0.8 in all the simulation runs, which is far
from any tolerable level (for uncorrelated variables, this rate would even be larger). The
experimentwise type [ error rate is always maintained with the sequential procedure and
with Holm’s procedure. As this was clear already from theory, it is not mentioned in the
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Figure 2. Results of simulation experiments in the structure with ‘two-stage profile’ for
varying sample size
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following examples. For 5 =6 » the proposed sequential procedure has distinctly higher
rejection rates for the 26 pairs with ‘non-null pairs® than Holm’s procedure. This
difference is less for n=12. For a sample size of 18, both multiple procedures have
nearly identical rejection rates, and for larger n, Holm’s procedure would even have
better results than the scquential procedure, :
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Figure 3. Results for simulation series with *peak profile’ and sample size n = 12. The
L ; R 1 4 T
rejection rates are given separately for pairs with difference P Hy 3 u, and = W in

expectation, denoted as class 1,4 and 7, respectively.
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a 1 (Holm)

shift parameter

In the sccond example, the sample sizc is fixed at 7= 12 . The expectation profile is
linearly increasing from 0 (time 1} to p (time 8) and then again linearly decreasing down
to 0 at time 15 (‘peak profile®). Here, the difference in expectation varies from 0 to p in
steps of j1/7 . Therefore, Figure 3 gives the results of the proposed sequential percdurei(
and Holm’s procedure for some selected classes of differences (denoted in steps of
1/7). As we can see, the sequential procedure has a higher power in this situation for
the small as well as for the large differences in expectation at the given sample size.

Finally, Figure 4 investigates the robustncss of the sequential procedure with respect
to deviations from the equal variances assumption at different time points, which is
utilized for the sequential procedure to attain a high power. Here again, we have a sample
size n=12, pairwisc correlation coefficients of 0.5 between all pairs of variables,
expectation 0 at time point 1 to 13, and |t =1.5 at time point 14 and 15.

A disturbance parameter d takes values from 1 to 2. The variance is modified

according to ./Var(x;) = d2u—1 . i=0,...,p where u is uniformly distributed in
i

[0,1] and is recalculated from one simulation run to the next. Consequently the variance
has been set to 1 at the left of the disturbance axis (d =1.0) with increasing variation for

increasing magnitude of d. At the right of the disturbance axis (d =2.0), the standard
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Figure 4. Results for simulation series with violation of the equal-variances assumption

(cf. text)
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deviation of a variable can vary from 0.5 to 2. The local tests without adjustment have
again the highest rejection probabilities (at the cost of unacceptable experimentwise type
I error rates). As alrcady seen in Figure 2, the sequential procedure outperforms Holm's
procedﬁre in‘the undisturbed case. However, with increasing disturbance, the sequential
procedure suffers obviously from an ineffective ordering of the pairs of variables in step
1 of the procedure. In the given series, the preference of methods switches at d ~1.55,
corresponding to variances between about 0.4 and 2.4 ;

We would like to point out that inhomogeneous variances in the pairs of variables
may be due both to inhomogeneous variances in the original variable at different times
(as in Figure 4), and to an inhomogeneous correlation structure. Both violations of the
compound-symmetry assumption have similar effects on the power of the sequential
procedure, whereas the type I error is not influenced.

5. ACKNOWLEDGEMENT

2 ‘b‘,
We are grateful to Dr. Sylke Kaltenhduser from the Department of Medicine 1V,
University of Leipzig for permission to use the rheumatoid arthritis data. We would also
like to thank Dr. Serge Provost for his comments to improve the paper.

205



Multiple Comparisons with Repéated Measurements Schuster and Kropf

REFERENCES

1. FANG, K.-T. and ZHANG, Y.-T., (1990). General Multivariate Analysis. Science
Press Beijing and Springer-Verlag, Berlin, Heidelberg.

2. HOLM, S. (1979). A simple sequentially rejective multiple test procedure. Scand. J.
Statist. 6, 65-70.

3. HSU, 1.C. (1996). Multiple Comparisons — Theory and Melhods Chapman & Hall.
London.

4. KROPF, S. (2000). High-dimensional Multivariate Procedures in Medical Statistics
(German: Hochdimensionale multivariate Verfahren in der medizinischen
Statistik). Shaker Verlag, Aachen.

5. KROPF, S. and LAUTER, J. (2002). Multiple tests for different sets of variables
using a data-driven ordering of hypotheses, with an application to gene
expression data. Submitted to Biometrical Journal.

6. LAUTER, J., GLIMM, E. and KROPF, 8. (1998). Multivariate tests based on left-
spherically distributed linear ccores. Adnnals of Statistics 26, 1972-1988.
Correction: Annals of Statistics 27, 1441.

7. MAURER, W., HOTHORN, L.A. and LEHMACHER, W. (1995). Multiple com-
parisons in drug clinical trials and preclinical assays. In: Biometrie in der
chemisch-pharmazeutischen Industrie. 6. (ed J. Volmar), 3-18. Gustav Fischer
Verlag. Stuttgart Jena New York. '

3. SCHUSTER, E. (2000). Markov Chain Monte Carlo Methods for Handling Missing
_Covariates in Longitudinal Mixed Models. In: Proceedings in Computational
Statistics 2000 (eds J. Bethlehem and P. van der Heijden), 439- 444, Physica
Verlag. Heidelberg.

9. TIMM, N.H. (1980). Multivariate Analysis of Variance of Repeated Measurements.
In: Krishnaiah, PR. (ed.). Handbook of Statistics. Volume 1 - Analysis of
Variance. North-Holland, Amsterdam, 41-87.

206



Multiple Comparisons with Repeated Measurements

Schuster and Kropf

Table 1. Results of the proposed sequential procedure in the rheumatoid arthritis data

Ser. Time Mean Std. £ value in Order
no. points difference | Error ! test criterion
1 1-6 2.75 0.78 0.0047 171.0
2 1-10 3.23 0.54 0.0001 163.9
3 1 -12 2.98 0.65 0.0008 163.4
4 I -9 2.73 0.70 0.0026 154.2
5 1- 8 2.60 0.71 0.0039 148.3
6 1-7 2.81 0.60 0.0006 141.7
75 1-13 2.64 0.61 0.0012 133.1
8 L= 2.26 0.72 0.0094 129.4

< 1-15 2,32 0.69 0.0062 126.6
10 1-14 247 0.60 0.0017 120.6
11 1-3 178 0.78 0.0441 119.4
12 1-11 2.20 0.68 0.0077 118.5
13 1-4 2.05 0.72 0.0154 118.1
14 2 -10 2.26 0.56 0.0019 102.4
15 2 -12 2.02 0.63 0.0086 101.4
16 1-2 0.97 0.73 0.2144 823
17 2-13 1.68 0.59 0.0163 79.8
18 3-12 1.20 0.68 0.1047 78.1
19 3-10 1.44 0.62 0.0396 75.3
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Figure 1. Alpha-2 globulin S’Jalues in the sample data (mean + std dev)
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Figure 2. Results of simulation experiments in the structure with ‘two-stage profilc’ for
varying sample size
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Figure 3. Results for simulation series with ‘peak profile’ and sample size n = 12. The

rejection rates are given separately for pairs with difference ];p.. %}1, and lj.l in

7

expectation, denoted as class 1, 4 and 7, respectively.
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Figure 4. Results for simulation series with viclation of the equal-variances assumption

(cf. text)

@
D 1.04—w
£ 3
Q 94
£ 4
>
£ 8
=
s 7
c
S 4
@
g = >
=
.3 4
g 3 e
5 4 Local t tests
2 2 —
= ] i
5 jequent;al t tests
@ 0.0 | O Holm's procedure
8- 10 12 14 16 18 20

Disturbance parameter d






