
Introduction

High-density oligo-nucleotide micro-arrays
by Affymetrix contain 11 to 20 short
(25-mer) perfect match (PM) nucleotide se-
quences per transcript. In addition, every
PM sequence is accompanied by a mis-
match (MM) sequence where the middle nu-
cleotide is replaced by its complement [1].
Raw probe level data of such arrays require
a four-step preprocessing in order to obtain
transcript-wise expression values: Back-
ground correction (to eliminate stray signals
separately for each chip), normalization (to
account for chip effects caused by variance
in total amount of RNA or scanning con-
ditions etc.), PM correction (making use of
the probe-pair design of the micro-array
technology in an attempt to eliminate non-
specific hybridization), and summarization
(synthesizing one expression value per gene
from the multiple probes addressing it). For
each of these steps multiple options have
been developed most of which are readily
available within the BioConductor project
[2]. This generates a confusing plethora of
combinations.

For the purpose of evaluating and vali-
dating statistical procedures a few calibra-
tion data sets with known underlying pa-
rameters have been made publicly availa-
ble (e.g. GeneLogic, http://qolotus02.gene
logic.com/datasets.nsf/; Affymetrix, http://
www.affymetrix.com/support/datasets.
affx). They offer a valuable insight on the
precision and accuracy of expression
measures as Cope et al. show in a recent
paper where they describe a graphical web
tool to automatically assess the perform-
ance of preprocessing methods based on
theses data sets [3].

However, the available calibration data
sets either contain only a handful of differ-
entially expressed genes (spike-in experi-
ments) or all genes present are differentially
expressed with effect in the same direction
(dilution series experiments). In addition,
they tend to exhibit an unusually low noise
level. For both reasons they do not represent
a typical experiment setting. Furthermore,
as the available calibration data sets are re-
peatedly used in the development of new
methods for the aforementioned prepro-
cessing steps a certain degree of over-fitting
may be suspected.

To circumvent some of these obstacles
and to further improve research on prepro-
cessing strategies we developed a technique
to simulate artificial spike-in chip raw data.
In particular, we are now able to study the
influence of the proportion of differentially
expressed genes and the influence of the
proportion up-regulated among differen-
tially expressed genes. This has not been
systematically investigated before.

Simulation Methods
We use the parametric bootstrap [4] to simu-
late chips based on a given real raw data set
assuming that raw probe data from oligo-
nucleotide micro-arrays are approximately
multivariate normally distributed on the log
scale. The log scale is used because errors
[6] (at least for larger signals) and chip ef-
fects tend to be multiplicative.

It may surprise that we do not need to
specify a particular model for the chip-
effect. Note that the existence of a chip
effect induces strong positive correlations
between all probes in the observed variance-
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covariance matrix. A chip effect can be
understood as just adding a chip-specific
term on the log scale to all probes of a given
micro-array. In three un-normalized data
sets we found a median correlation coef-
ficient of 0.72, 0.82 and 0.80 with 82.3, 91.3
and 97.2% over 0.5, respectively.

In reverse, the sampling of chips from a
multivariate normal distribution with such
strong positively correlated variables results
in data that exhibit all the characteristics that
are usually regarded as indicative to the
presence of a chip effect.

Given the Cholesky decomposition of
the empirical variance-covariance matrix it
is standard to generate a corresponding
multivariate normal random vector using a
univariate normal random generator. As is
well known, the empirical variance-covari-
ance matrix by far doesn’t have full rank. In-
stead of artificially regularizing it by adding
small values to the diagonal [5] before sam-
pling, we apply the Cholesky decomposi-
tion algorithm to the singular positive semi-
definite matrix. Notice that the resulting
lower triangular matrix has only r non-zero
columns where r is the rank of the original
empirical variance-covariance matrix. Thus
we are able to massively reduce both com-
puter time and workspace requirements.
This procedure has only a small numerical
impact on the sampled data when compar-
ing to data sampled from a regularized
matrix. With this simplification we can
simulate micro-arrays on the probe level
(dimension ~ 400,000).

In order to investigate the impact of an
increasing number of differentially express-
ed genes on the performance of the normal-
ization procedures we implemented a
method to artificially spike-in differences
according to a given distribution of effect
sizes. The naive approach, i.e. just shifting
the means by the “true” effect size, leads to
data that deviates from the pattern seen in
real data sets at the low intensity range. The
reason is that measurement errors are both
additive and multiplicative on the original
scale [6]. In the low intensity range the addi-
tive error component must not be inflated by
the “true” fold change spiked in. We devel-
oped a spike-in model correcting roughly
for this phenomenon by first estimating the
additive component using the RMA back-

ground estimation method [7]. We then
apply the fold-change only to the back-
ground corrected signal and add the back-
ground again. (Details on the simulation are
described in the diploma thesis of JF, which
is available from the authors.)

For simplicity, we assume every probe of
a given probe set to have the same effect
size. This model seems to be reasonable for
the PM probes as they all assess the same
transcript sequence but it may not apply to
MM probes which are designed to only
measure unspecific binding. However, Chu-
din et al. point out that the MM probes also
pick up a specific signal similar to the PM
signal albeit not as sensitive to the true tran-
script abundance [8]. Thus, simulation re-
sults may be biased for preprocessing
methods that make use of MM signals.

Design of Simulation Study
Based on the simulation procedure de-
scribed above we simulated 28 gene ex-
pression experiments using two original
data sets. The larger data set concerning 127
samples of adeno-carcinoma of the lung has
been published by Bhattacharjee et al. [9]
and is available on the intenet(http://
www.camda.duke.edu/camda03/data sets/);
the other data set consisting of 15 samples
from hot thyroid nodules was published by
Eszlinger et al. [10] and was kindly provided
by the authors. Both data sets are based on
Affymetrix’HG-U95Av2 arrays which con-
tain approximately 400,000 probes in
12,625 probe sets. We used the larger data
set to report results in this paper but we
found similar results using the smaller set.

In order to check the assumption that the
log-transformed raw data is normally dis-
tributed we performed probe-wise Shapiro-
Wilk tests for normality. The resulting
p-values were approximately uniformly dis-
tributed in both data sets as expected under
the null hypothesis.

The simulated experiments varied in the
number of differentially expressed genes,
the proportion of up-regulated genes, and
the sample size. The simulated experiments
were preprocessed in 30 different ways of
combining a background correction, a nor-

malization, a PM correction, and a sum-
marization method available within the
R-based BioConductor project [2].

For background correction we used the
following options: Affymetrix’ Microarray
Suite (MAS) 5.0 [11], RMA [7], none. For
normalization we chose among the possibil-
ities: quantiles [12], constant (MAS 5.0)
[11], VSN (13), invariant set [14], none. For
PM correction we chose to either use the PM
signals only (see [7]) or to compute the ideal
mismatches as in MAS 5.0 [11]. The former
option was then combined with median-
polish [7] and the latter with Tukey’s
bi-weight algorithm [11]. Currently, these
are the two most common summarization
methods. Altogether, this results in 30 dif-
ferent preprocessing protocols which is of
course only a small yet still manageable
fraction of the large number of possible
combinations available in BioConductor
and elsewhere.

Unless otherwise specified we consider a
two-sample comparison situation with 50%
of the genes being differentially expressed
with additive absolute effect sizes (on the
log scale) randomly chosen from a half
normal distribution centered at zero.

We then compared resulting probe
signals and expression values by applying
several criteria namely:
1) log variance ratio to quantify the

decrease/increase of precision resulting
from background correction and normal-
ization,

2) the slope of the estimated versus true
effect size regression line (on the log
scale) as a measure for accuracy,

3) mean squared error of the effect size
estimates, a statistic that addresses both
accuracy and precision,

4) sensitivity and specificity to detect
differentially expressed genes using uni-
variate Welch-t-tests and the Benjamini-
Hochberg procedure to control the false
discovery rate at the 5% level.

We avoid criteria based on pure fold change
measures, as they do not account for any
statistical uncertainty caused by various
sources of variation.
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Results
Any investigated normalization method
considerably reduces the variance on the
probe level (median up to 8-fold in our data
sets). Any background correction method
leads to marked variance inflation in the
lower intensity range (data not shown).

The slope of the estimated versus true ef-
fect size regression line (on the log scale)
should be near one with an unbiased esti-
mator. Without background correction all
normalization methods lead to biased esti-
mators with slopes in the order of 0.5 where
VSN (which includes some background
correction in the underlying model) is in the
lead (0.69). With either background method

the bias is essentially removed (slopes close
to 1).

We use the mean squared error MSE(θ,
θ̂) = E((θ̂ – θ)2) = Var(θ̂) + (E(θ̂ – θ))2 as
criterion to trade off increased variance
against decreased bias. Table 1 shows that
the MSE is lowest without background cor-
rection and some normalization. There are
only minor differences between normali-
zation methods and median-polish shows a
minor advantage as a summary measure.

Table 2 summarizes the sensitivity of a
typical test procedure (Welch t-test and
Benjamini-Hochberg procedure to control
the false discovery rate at 5%) to detect
spiked-in differentially expressed genes.
Normalization leads to a sensitivity of up to

59% while only a few genes are detected
when no normalization is performed. Back-
ground adjustment has a minor influence on
sensitivity. Summary measures obtained
with median-polish appear to have a some-
what higher sensitivity than those obtained
with Tukey bi-weight. These results were
obtained with sample size N = 15, but quali-
tatively appear not to depend on the sample
size (range N = 3-30).

Varying the proportion of differentially
expressed genes (in the symmetrical setting
with 50% up-regulated) we only found a
moderate increase in MSE for all normali-
zation methods investigated and no appar-
ent effect on sensitivity.

Our major finding concerns the effect
of an increasing asymmetry in the propor-
tion up-regulated among differentially ex-
pressed genes. Figure 1 shows that asym-
metry shifts the median of the estimated
effect sizes in non-differentially expressed
genes away from zero thus introducing bias.

This phenomenon compromises speci-
ficity and inflates the rate of false positive
findings: Figure 2 describes the true false
discovery rate in selection lists obtained by
the Welch t-test and the Benjamini-Hoch-
berg procedure to control the false dis-
covery rate at a 5% level. Due to the bias, the
true false discovery rate is well above the
pre-specified level. VSN turned out to be
relatively more robust to asymmetry than
the other normalization procedures investi-
gated.

Discussion
We developed and implemented a method to
simulate oligo-nucleotide micro-arrays in
order to compare preprocessing procedures
in contexts which up to now were not yet
analyzable. We use a parametric bootstrap
approach to sample chips similar to an em-
pirically given raw data set. Chip effects
which normalization tries to eliminate in-
duce strong positive correlations between
probe intensities. We need not explicitly
model the form of these chip effects since
the positive correlations present in the raw
data in reverse give rise to “pseudo”-chip
effects.

Table 1 Medians of mean squared errors (MSE) of effect size estimates per preprocessing procedure. The median MSEs
were averaged over 14 simulated experiments.

Normalization method No BG correction

MPa)

Quantiles 0.05

Constant 0.17

Global Loess 0.05

VSN 0.08

Invariant Set 0.05

No normalization 0.33

a) PM only + median polish (RMA summary method)
b) Ideal Mismatch + Tukey Bi-Weight (MAS 5.0 summary method)
BG = background

TBIb)

0.07

0.13

0.07

0.12

0.06

0.36

RMA BG correction

MP

0.15

0.29

0.16

0.23

0.37

1.36

TBI

0.31

0.27

0.35

0.45

0.53

2.11

MAS 5.0 BG correction

MP

0.16

0.23

0.16

0.08

0.16

0.84

TBI

0.22

0.27

0.22

0.11

0.23

0.89

Table 2 Sensitivity to detect differentially expressed genes by preprocessing procedure. In this example 50% of the genes
were differentially expressed, 50% of which were up-regulated. Each group included 15 arrays. In order to obtain a list of dif-
ferentially expressed genes we tested the difference in mean log expression against zero for every gene using univariate
t-tests. The resulting p-values were then adjusted by the Benjamini-Hochberg procedure and a 5%-level cutoff was applied.

Normalization method No BG correction

MPa)

Quantiles 0.59

Constant 0.37

Global Loess 0.50

VSN 0.59

Invariant Set 0.59

No normalization 0.00

a) PM only + median-polish (RMA summary method)
b) Ideal Mismatch + Tukey Bi-Weight (MAS 5.0 summary method)
BG = background

TBIb)

0.52

0.39

0.40

0.52

0.51

0.00

RMA BG correction

MP

0.58

0.53

0.52

0.58

0.46

0.03

TBI

0.52

0.48

0.43

0.50

0.44

0.04

MAS 5.0 BG correction

MP

0.59

0.54

0.52

0.59

0.59

0.10

TBI

0.53

0.48

0.44

0.52

0.51

0.08

Methods Inf Med 5/2004

436

Freudenberg et al.



In a simulation study, we compared vari-
ous combinations of background correc-
tion, normalization, PM correction and
summary methods available within the
BioConductor project in the situation
where 50% of all genes are differentially
expressed.

With symmetry between up and down
regulation, we essentially confirm known
results on variance and bias from a setting
with very low proportion of differentially
expressed genes [7, 12, 15] also for our con-
text. In the symmetric case there is no clear
winner among normalization methods, but
it seems to be advantageous to have no back-
ground correction and use a summary
measure taking into the account the differ-
ences in probe affinity (e.g. median-polish).

A pronounced asymmetry between up
and down regulation causes a bias in the
effects size estimate of non-differentially
expressed genes.This inflates the false posi-
tive detection rates. The problem concerns
all normalization procedures investigated,
but the VSN method appears to be the
relatively most robust method. This is not
surprising since the VSN model is fitted
using least trimmed sum of squares regres-
sion based only on the 50% smallest resi-
dues; thus normalization is mainly based on
non-differentially expressed genes.

We currently investigate using iterative
selection of a subset of genes with high
probability of not being differential and
basing normalization only on this subset
as a remedy to this problem. Although the
invariant set method [14] did not solve the
problem, first results using genes with small
variance across samples look promising and
will be published elsewhere.

The situation in which many genes are
differentially expressed in one direction is
by no means artificial. This situation may
even be common in certain cell-line ex-
periments. For instance, Lemon et al. [16]
stimulated starved fibroblasts and reported
massive up-regulation of many genes.

In conclusion, bootstrap simulation can
be used to compare preprocessing methods
and massive up-regulation as encountered
in certain biological experiments poses a
problem for currently used normalization
methods.

Fig. 1 Median estimated effect sizes in those genes simulated non-differentially vs. the proportion of up-regulated genes
per sample. In all cases approximately 50% of the genes were differentially expressed. No background correction, the respec-
tive normalization and median-polish was performed. Most normalization methods lead to deviation from zero thus intro-
ducing bias.

Fig. 2 Observed false discovery rate vs. proportion of up-regulated genes for different normalization methods. The lists of
differentially expressed genes were obtained by including all genes having a Benjamini-Hochberg adjusted p-value from a
univariate t-test lower than 5%. The investigated normalization methods lead to a failure in controlling the specified false
discovery rate if approximately 70% of the genes or more are up-regulated. Not to normalize avoids false positives but does
not produce many true positives either.
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