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Abstract

Due to their inherent complexity, engineered wireless multihop ad hoc communication net-
works represent a technological challenge. Having no mastering infrastructure the nodes have to
selforganize themselves in such a way that for example network connectivity, good data tra4c
performance and robustness are guaranteed. In this contribution the focus is on routing and con-
gestion control. First, random data tra4c along shortest path routes is studied by simulations as
well as theoretical modeling. Measures of congestion like end-to-end time delay and relaxation
times are given. A scaling law of the average time delay with respect to network size is revealed
and found to depend on the underlying network topology. In the second step, a distributive rout-
ing and congestion control is proposed. Each node locally propagates its routing cost estimates
and information about its congestion state to its neighbors, which then update their respective
cost estimates. This allows for a 7exible adaptation of end-to-end routes to the overall congestion
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state of the network. Compared to shortest-path routing, the critical network load is signiCcantly
increased.
c© 2004 Elsevier B.V. All rights reserved.

PACS: 05.10.Ln; 05.65.+b; 84.40.Ua; 89.20.−a; 89.75.Fb
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1. Introduction

In two previous Papers [1,2] we have already discussed the so-called wireless mul-
tihop ad hoc networks. They represent an engineered communication network, which
reveals many facets of very intriguing and complex behavior. In this respect they Ct
nicely into the cross-disciplinary realm of the Statistical Physics of complex networks
[3–5], which has already opened its doors for other communication networks like the
Internet, but also for biological and social networks.
Wireless multihop ad hoc networks represent an infrastructureless peer-to-peer gen-

eralization of todays wireless cellular phone networks. Instead of being slaved to
a central control authority, each node not only sends or receives packets, but also
forwards them for others. Consequently, communication packets hop via inbetween
ad hoc nodes to connect the initial sender to the Cnal recipient. A lot of coordi-
nation amongst the nodes is needed for the overall network to perform well. They
have to ensure network connectivity, good data-tra4c performance and robustness
against various forms of perturbations, just to name but the most important issues.
Because of this intrinsic coordination, wireless multihop ad hoc networks repre-
sent an excellent example of what is called a selforganizing network. However,
their biggest challenge is yet to come, how to get selforganization to
work.
The connectivity issue has already been discussed quite extensively [1,6–9], also

addressing interference eJects [10,11]. In one form or the other all these eJorts relate
to continuum percolation [12–14]. An interesting distributive scheme has been put
forward in Ref. [1], which turned out to be amazingly robust, guaranteeing strong
network connectivity almost surely; we will brie7y touch upon this scheme again in
Section 2.1. The robustness issue with respect to selCsh users has received inspirations
from the biological immune system and distributive algorithmic suggestions have been
put forward [15].
As to data-tra4c performance, estimates on the throughput, i.e., the capacity of how

much end-to-end tra4c the network is able to handle without overloading, have been
given. In Ref. [16] a rigorous upper bound has been derived to scale with the square
root of the network size. ReCned estimates have been given in [2], revealing that the
scalability of the throughput depends on the underlying network structure. Besides sev-
eral other idealistic assumptions, these estimates have employed shortest-path routing.
Although several proactive and reactive routing schemes have already been discussed
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[17–20], we are not aware of any selfoptimizing scheme, which also accounts for
congestion avoidance.
In this paper we will propose a prototype for such a highly wanted distributive and

adaptive routing and congestion control. The idea is that every node keeps an estimate
of how much it costs to send packets to Cnal destinations and to update these estimates
in a distributive manner. The latter can be achieved in a very elegant way without any
additional exchange of control information. Whenever a node is actively involved in a
forwarding one-hop transmission, it silences its neighbors anyhow, so that those do not
interfere on the shared wireless propagation medium. This blocking is called medium
access control. Upon blocking its neighbors, the node is able to distribute its routing
cost estimates and its congestion state to them, which those then use to update their
cost estimates. In the technical jargon of engineers, this distributive scheme corresponds
to a coupling of the medium access control layer with the routing layer.
The structure of this paper is as follows. Section 2 summarizes the key operational

features of wireless multihop ad hoc networks, introduces plausible simpliCcations and
describes the setup of generic simulations with random data tra4c. Shortest-path rout-
ing is used in Section 3 to investigate certain Cngerprints of congestion like end-to-end
time delay and single-node relaxation times. Whenever possible, the numerical simu-
lations are accompanied with analytic modeling. Section 4 presents the details of the
proposed distributive routing and congestion control and compares its results to those
obtained with the shortest-path routing. The conclusion and a short outlook are given in
Section 5.

2. Some basics on wireless multihop ad hoc networks

We explain the key features of wireless multihop ad hoc networks hand in hand
with some simpliCcations.

2.1. Geometric ad hoc graphs

The Crst simpliCcation is to neglect mobility and to distribute N nodes onto the
unit square in a random and homogeneous way. Then, according to a simple isotropic
propagation-receiver model, a unidirectional link from node i to node j exists, if

Pi=R�
ij

NOISE +
∑

activek Pk=R�
kj
¿SNR : (1)

Pi denotes the transmission power of node i and Rij represents the Euclidean distance
between i and j. The path-loss exponent � is assumed to be constant. Without any
loss of generality the variables NOISE and SNR are set equal to one. Condition (1)
guarantees that j is able to listen to i, i.e., i → j. Throughout this paper we will neglect
the interference sum over other active nodes k in the denominator of Eq. (1); this is
justiCed once � is not too close to 2 [11].

With these simpliCcations, wireless communication networks can be modeled as
graphs G = (N;L), where N refers to the set of nodes and L to the set of links.
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In general these links in L are directional links i → j. The subset Lbidir ⊂L repre-
sents the complete set of all bidirectional links i ↔ j. Although not strictly required,
bidirectional links are preferred for the operation of wireless ad hoc networks because
many communication protocols require instant feedback. The subset Ni ⊂N is called
the communication neighborhood of node i and represents the complete set of nodes
j∈Ni that all have bidirectional links j ↔ i in Lbidir with node i. The node degree ki
of node i is the number of nodes contained in Ni. In a similar fashion Nout

i deCnes
the set of nodes that have at least an unidirectional link i → j from i. A communication
route or path is a sequence of nodes such that there are bidirectional links in Lbidir

between all consecutive pairs of nodes. A shortest path between two nodes i; f∈N is
a route containing fewest possible number of nodes. The average length of all shortest
paths over all node pairs i, f is referred to as the diameter D of the network.
One further step is needed in order to fully specify wireless multihop ad hoc network

graphs: assignment of the transmission power Pi for all nodes. Most widely used is
the constant transmission power rule, where the same transmission power Pi = P is
assigned to all nodes i∈N [6,8,16]. All existing links are then bidirectional. Once
the transmission power is chosen such that P = (ktarget=
N )�=2, an average node will
have ktarget bidirectional neighbors. This target degree has to be ktarget¿ 4:52 for a
connected giant component to exist independent of the network size [14], but for the
entire network to be strongly connected it needs to be larger [1,7,9]. We adopt the value
ktarget = 24, which guarantees strong network connectivity almost surely for network
sizes up to several thousands [1]. We will call wireless multihop ad hoc network graphs
generated with this power assignment as const-P networks.
A diJerent power assignment has been presented in Ref. [1], which is more energy

e4cient. It is based on a distributive assignment. In a nutshell, each node i forces the
kmin closest nodes j to adjust their transmission powers to Pj = R�

ij, while adopting
the value Pi = supj Pj for itself. Its own value can be increased further whenever
another close-by node forces i in return to have an even larger transmission power.
In this respect each node has at least kmin bidirectional neighbors. We adopt the value
kmin =8, which guarantees strong network connectivity almost surely for network sizes
up to several thousand nodes [1]. We will call wireless multihop ad hoc network
graphs generated with this heterogeneous power assignment as minimum-node-degree
networks.
Fig. 1 illustrates two random geometric graphs, one obtained with the const-P as-

signment and the other with the minimum-node-degree assignment. We explicitly point
out that the existence of links in L is a direct result of the spatial positions and the
transmission powers of the nodes. In that sense not every possible set of links L can
be realized by an appropriate power assignment. This is in clear contrast to any wired
network where such restrictions do not in7uence the existence of connections between
diJerent nodes.

2.2. Generic data tra;c

In order to study the statistical properties of data tra4c on wireless multihop ad
hoc networks, the generic simulation model as already presented in Ref. [2] has been
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Fig. 1. Random geometric wireless multihop ad hoc graphs obtained with (left) const-P and (right)
minimum-node-degree transmission power assignment. N = 100 nodes have been randomly and homoge-
neously distributed onto a unit square. Solid/dotted links are bi-/unidirectional.

applied. For the sake of illustration of the key mechanisms, we now give again a short
outline. The simulation is based on discrete time steps. At the very beginning of a
time step a new data packet of Cxed size can be generated at each node i∈N with
a probability �i = �¡ 1, which is also referred to as the packet creation rate. In case
of creation at a certain node i, a destination f is randomly chosen among {N \ i}
and the packet is put at the end of i’s buJer queue, assumed to have inCnite capacity.
Nodes, for which a new packet has been created, are blocked and are not involved in
any further communication action for the remainder of this time step. During a short
contention phase following the packet creation phase the non-blocked nodes with a
non-zero queue compete for gaining sender status. A competing node i is randomly
picked Crst and obtains permission to transmit its Crst-in-line packet. It then makes a
decision, to which neighbor j∈Ni the packet with Cnal destination f is forwarded.
In its simplest form, this could be shortest-path routing or, in a more sophisticated
form, routing depending on the congestion state. In order to reduce mutual interference
within the shared communication medium, the sending as well as receiving node block
their respective outgoing neighbors {(N out

i \ j) ∪ (Nout
j \ i)} for the remainder of this

time step; this blocking is called medium access control (MAC). Only then another
node with non-zero queue that has not been blocked so far is chosen at random to
attempt the transmission of its Crst-in-line packet. If the intended receiver has already
been blocked before, the node tests its second-in-line packet and so on, until either the
Crst idle recipient is found or the end of its queue is reached. This service discipline is
denoted as Crst-in-Crst-possible-out. If this node succeeds to gain sender status, it then
MAC-blocks again its remaining outgoing neighbors as well as those of the receiving
node. This iteration is repeated until no free one-hop transmissions are left. Finally, all
nodes with sending permission then submit their selected packet and remove it from
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their queue. The receiving nodes either add the incoming packet to the end of their
queue or, if they are the Cnal recipient, destroy the packet.

3. Fixed shortest-path routing: properties of data tra c

A particular simple form of routing uses shortest paths with respect to the hop-metric.
For the network to learn about the shortest routes all by itself, each node is required
to 7ood discovery information into the whole network, collect the feedback and store
those routes with the shortest hop distance. In principle degeneracy might occur, which
would allow to pick the least-congested shortest path between initial sender i and Cnal
recipient, f as a modest form of congestion control; we will come back to this in
Section 4.1. For all of this section we prefer to discard degeneracy, pick one of the
shortest degenerate paths at random and forward all packets originating in i and destined
for f along it. This restriction allows for several analytical insights and points to the
speciCc needs for improvement which a more sophisticated routing and congestion
control has to take care of.

3.1. End-to-end time delay I: simulation results

We deCne the end-to-end (e2e) time delay of a packet to be the number of time
steps between the generation at the originating node and the destruction at the Cnal re-
ceiver. Its temporal and network-ensemble average provides a measure of the network
performance. The direct sampling of end-to-end times within the generic data tra4c
simulations implies a tagging of each packet with its creation time and is needed to
extract respective distributions. Although average e2e-time delays can also be deter-
mined via this route, an indirect sampling procedure is more e4cient in that case. In
the subcritical regime �¡�crit the average number �N of packets created within the
overall network per time step must be equal to the number of packets delivered per
unit time. Since the average time a packet spends in the network is 〈te2e〉 we can
assume that 〈Nactive〉=〈te2e〉 packets are delivered to their Cnal destination per unit time,
where 〈Nactive〉= 〈

∑
i ni〉 represents the average total number of active packets after a

stationary network state has been reached. This leads to Little’s Law,
〈Nactive〉
〈te2e〉 = �N ; (2)

well known in queuing theory [21]. Since the network size N and the packet creation
rate � are known to us and 〈Nactive〉 is easily sampled, Little’s Law allows for the
indirect determination of the average end-to-end time delay.
Fig. 2 illustrates the average e2e-time delay as a function of the packet creation

rate �. As expected, it increases with the network load � and diverges at the criti-
cal packet creation rate �crit , which is a clear phase-transition-like sign that the sys-
tem is about to leave its uncongested subcritical state and to enter its congested su-
percritical state for �¿�crit . We also observe that �crit is diJerent for the const-P
and the minimum-node-degree networks; see Ref. [2] for more details on the de-
pendence of the end-to-end throughput �critN on the underlying network structure.
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Fig. 2. Sample- and node-averaged end-to-end time delay te2e(�) determined from generic data tra4c sim-
ulations (symboled curves) and the analytic estimate using Eqs. (2), (7), (10) and (11) (curves without
symbols). The network size has been Cxed to N =100. The two transmission power assignments are const-P
(vertical crosses) with ktarget = 24 and minimum-node-degree (rotated crosses) with kmin = 8.

In the limit � → 0 the average e2e-time delay converges to the network diame-
ter 〈te2e〉 → D. Although this observation is intuitively clear, we will give an an-
alytic support in the next subsection. Due to the diJering network diameter, it ap-
pears that with respect to e2e-time delay the const-P networks perform better than the
minimum-node-degree networks. Note however, that their respective parameters ktarget
and kmin have been chosen from the connectivity perspective only. A larger kmin would
lower the network diameter for the minimum-node-degree networks. In Section 3.3
we will present another form of performance comparison between the two network
models.
The distribution p(te2e) of the e2e-time delay obtained from the generic data-tra4c

simulation with Cxed shortest-path routing is shown in Fig. 3. It is a network-wide dis-
tribution, which has been sampled over all generated packets. The employed const-P
network realization consists of N =100 nodes. Safely inside the subcritical phase (�=
0:005) the sampled distribution can be Ctted well with a generalized
exponential

pexponential(te2e) =
1
b
e−(te2e−a)=b : (3)
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Fig. 3. Distribution of the end-to-end time delay obtained from a generic data tra4c simulation with Cxed
shortest-path routing on a typical const-P network with N = 100 nodes. (Top) � = 0:005 well below and
(bottom) � = 0:0095 close to the critical packet creation rate �crit . Best Cts with an exponential and a
log-normal distribution are also shown. The insets represent log–log plots.

However, for packet creation rates (�=0:0095) close to �crit =0:0101 of the particular
used network realization a log-normal distribution

plognormal(te2e) =
1√

2
�te2e
e−(ln te2e−�)2=(2�2) (4)
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provides a better Ct. The emergence of a log-normal distribution close to the criti-
cal packet creation rate appears to be an inherent feature of communication networks
[22,23], when nodes are strongly and collectively coupled via heavy data tra4c.
The tendency to have a small but non-negligible number of packets with a rather

high end-to-end time delay is an undesirable feature for communication networks.
A suppression of this tail in the distribution of the end-to-end time delay is regarded
as one goal of any advanced routing and congestion control. Of course, another goal
is to increase the critical packet creation rate.

3.2. End-to-end time delay II: analytic estimate

In this subsection we give an analytic estimate of the mean end-to-end time delay.
The starting point is Little’s Law (2), which demands to model the average number
Nactive of active data packets traveling on the network. Upon assuming inter-node cor-
relations to be small, we adopt the single-node picture and reduce Nactive =

∑
i ni to

the modeling of a single-node queue length ni. The latter itself depends on the in- and
out-7ux rates �in

i and �out
i of data packets to node i. If this turns out to be the only

dependence, then the probability for node i to have ni packets in its queue can be
described by the rate equation

p(ni; t + 1) = �out
i p(ni + 1; t) + (1− �in

i − �out
i )p(ni; t) + �in

i p(ni − 1; t) : (5)

Reducing to the stationary limit p(ni; t+1)=p(ni; t) and taking the boundary condition
p(ni ¡ 0) = 0 into account, its normalized solution is

p(ni) =
(

�in
i

�out
i

)ni (
1− �in

i

�out
i

)
: (6)

As a direct consequence, the relations

〈ni〉= �in
i =�

out
i

1− �in
i =�

out
i

(7)

and

p(ni¿ 1) = �in
i =�

out
i (8)

are derived, which will be of later use.
We have carefully checked the assumption going into Eq. (5); see also Ref. [24]. If

the queue length distribution only depends on the in- and out-7ux rates, which is Cled
as case M=M=1 in queuing theory [21], then the interarrival and sending times statistics
should both obey the geometric distribution

p(tarrive=sendi = t) = (1− �in=out
i )t−1�in=out

i (9)

which comes with mean 〈tarrive=sendi 〉= 1=�in=out
i and re7ects the independence of subse-

quent packet arrival and departure events. The interarrival time tarrivei is deCned as the
time between two successive arrivals of data packets that are put at the end of node i’s
queue. The sending time tsendi is deCned as the time between two successive sending
events from node i to any of its neighboring nodes j∈Ni given that the queue is
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non-empty. Fig. 4 illustrates results obtained from the generic data tra4c simulation,
which show that, when focusing on a single node of an arbitrary network realization,
the distributions of interarrival and sending time nicely follow the parameterization (9)
for various packet creation rates and that the extracted in- and out-7ux rates lead to a
good agreement between the queue length distribution (6) and its simulated counterpart.
The modeling is now open for the in- and out-7ux rates. We brie7y outline the

results, which have already been derived in a previous Paper [2]. The in-7ux rate

�in
i =

�Bi

N − 1
(10)

is proportional to the rate �N of newly created packets, of which the fraction Bi=N
(N − 1) will be routed via node i during later time steps. The node inbetweeness
Bi and, equivalently, the link inbetweeness Bi↔j count the number of shortest paths,
which go over node i and link i ↔ j, respectively. The modeling of the out-7ux rate
�out
i = 1=�i is equivalent to the modeling of the mean sending time �i = 〈tsendi 〉:

�i = 1 +
∑

j1∈Nin
i

pj1 (nj1 ¿ 1) +
∑

j2∈N(Nin
i )\Nin

i

pj2 (nj2 ¿ 1)
∑

j1∈Nin
i

Bj2↔j1

2Bj2

= 1 +
∑

j1∈Nin
i

�Bj1

(N − 1)
�j1 +

∑
j2∈N(Nin

i )\Nin
i

�Bj2

(N − 1)
�j2

∑
j1∈Nin

i

Bj2↔j1

2Bj2
: (11)

The Crst sum in the Crst line represents those one-hop neighbors j1, which also want
to transmit a packet at the same time. Also two-hop neighbors j2 contribute, once they
have a packet to transmit to a one-hop neighbor, which would then MAC-block node
i; this is described by the last term of the Crst line. For the second step, Eqs. (8)
and (10) have been used, leading to N coupled linear inhomogeneous equations for
the sending times, which are then solved numerically for a given network realization.
Note, that the expression (11) overestimates the actual sending time to some extend,
because one- and two-hop neighbors might have already been blocked by previously
assigned one-hop transmissions.
Upon putting Eqs. (2), (7), (10) and (11) together, an analytic estimate of the

average end-to-end time delay can Cnally be given. It is interesting to mention two
limiting cases. In the limit � → 0 of very small packet creation rates, the estimated
sending times (11) converge to �i → 1, so that the average end-to-end time delay
becomes

lim
�→0
〈te2e〉= 1

�N

∑
i

�in
i = D ; (12)

where the sum rule 〈Bi〉=(N −1)D has been used to express the mean node inbetwee-
ness in terms of the network diameter [2]. This shows that for weak data tra4c loads
the network diameter determines the end-to-end time delay. In the other limit, �→ �crit ,
the average end-to-end time delay is dominated by the most critical node. This node i
is the Crst, for which the in- and out-7ux rates become identical and which determines
the critical packet creation rate �crit = (N − 1)=(supj Bj�j). The sum over all nodes
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Fig. 4. Distributions for (top) interarrival times, (middle) sending times and (bottom) queue lengths as
observed at the most-critical node of a const-P network realization with N =100. All shown packet creation
rates belong to the subcritical phase. The thin lines in (bottom) represent the expression (6), where according
to (9) the in- and out-7ux rate have been taken from (top) and (middle) as the reciprocal of the mean
interarrival and sending times.
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∑
j nj ≈ ni breaks down and we arrive at

lim
�→�crit

〈te2e〉= 1
�N

1
1− �Bi�i(�)=(N − 1)

∼ 1
�crit − �

: (13)

In the last step we have made use of the fact that �i(�) is bounded from above by
the magnitude of node i’s one- and two-hop neighborhood. As the packet creation rate
approaches �crit , the number of packets within the network explodes to inCnity. The
critical exponent turns out to be 1.
For the const-P and minimum-node-degree networks, the analytic estimate of the

average end-to-end time delay is shown in Fig. 2 and compared to the respective results
obtained from the generic data tra4c simulations. Note that both the analytic as well as
the simulation estimate have been averaged over a large sample of network realizations.
For � safely below �crit a good agreement is found. Since the analytic estimate and
the generic data-tra4c simulation produce a slightly diJerent �crit , divergence of te2e
sets in at diJerent �, so that the quality of the comparison declines for � close to �crit .

3.3. End-to-end time delay III: scalability

Instead of comparing the load-dependent end-to-end time delay between the two
network models of Cxed size, a comparison within a given network model, but of
varying size allows to address the scalability issue. Fig. 5 illustrates 〈te2e〉 as a function
of �=�crit for various sizes N¿ 100 of const-P and minimum-node-degree networks.
For each �=�crit and Cxed N generic data tra4c simulations have been run with a
sample of 100 network realizations. Note also, that for each realization the critical
packet creation rate 7uctuates to some small degree. For a Cxed �=�crit the end-to-end
time delay increases with network size. In the limit ���crit this increase roughly scales
as
√
N , which is in accordance with te2e(�=0|N )=D(N ) ∼ √N , re7ecting the scaling

behavior of the network diameter.
In order to make scalability statements also for 0¡�=�crit ¡ 1, the following scaling

ansatz is proposed:(
te2e(�=�crit|N )
te2e(0|N )

)�

=
te2e(�=�crit|N0)
te2e(0|N0)

: (14)

N0 is some reference network size. An exponent � = 1 would imply that the rela-
tive increase of the end-to-end time delay with respect to relative network load is
independent of the network size. For �¿ 1, the relative increase would decrease with
network size and for �¡ 1 it would be the other way around. In fact, the scaling
ansatz (14) leads to an excellent curve collapse, also shown as the lowest curve in
Fig. 5(top)+(bottom): the solid curve corresponds to the right-hand side of (14) with
N0 = 200 and the collapsing symboled curves correspond to the left-hand side of (14).
The Ctted exponent � is shown in the inset Cgure and reveals an N -dependence of the
form �(N )=(N=N0)�. For const-P networks with ktarget =24 and minimum-node-degree
networks with kmin = 8 we Cnd � = 0:11 and 0.25, respectively. This outcome shows,
that from the perspective of the relative end-to-end time delay minimum-node-degree
networks scale better with increasing network size than const-P networks.
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Fig. 5. Average end-to-end time delay as a function of �=�crit for various sizes of (top) const-P and (bottom)
minimum-node-degree networks. The lowest curve represents the curve collapse (14) with N0 = 200; the
exponent � is shown in the inset Cgure.

Focusing on the size-dependence of the network models, the analytic estimate of
the average end-to-end time delay also conCrms the scaling ansatz (14) with �(N ) =
(N=N0)�; see insets of Fig. 5(top)+(bottom). For minimum-node-degree networks the
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found value �= 0:25 perfectly matches the outcome from the generic data tra4c sim-
ulations, whereas for const-P networks a small discrepancy remains between the theo-
retically found � = 0:15 and its simulation counterpart 0.11.

3.4. Single-node correlation time: simulation results

Another reason for the emergence of congestion is that the queue length at speciCc
nodes may 7uctuate strongly around its mean. For sure, the occurrence of ni�〈ni〉
with non-negligible probability enhances congestion. More than this, it is also the
enhanced time it takes in such cases to relax back to the mean. A long relaxation
time would mean that the speciCc node as well as its surrounding part of the network
stay in a congested state for quite some time. A straightforward measure of such
a relaxation time is given by the Crst moment 〈n(t + Ot)|n(t)〉 of the conditional
probability p(n(t + Ot)|n(t)) to have a queue length n(t + Ot) at time t + Ot given
n(t) packets at time t. It is related to the correlation function r(Ot) by averaging over
all possible n(t):

r(Ot) =
〈n(t +Ot)n(t)〉

〈n〉2 =
1
〈n〉2

∑
n(t)

〈n(t +Ot)|n(t)〉 n(t)p(n(t)) : (15)

Thus, the correlation function can also be seen as an averaged measure of relaxation
times.
Fig. 6 illustrates the sampled single-node temporal correlation function ri(Ot) for a

characteristic node in a typical const-P network. The convergence of ri(Ot) to 1 for
large time diJerences indicates that correlations between queue lengths ni(t) and ni(t+
Ot) no longer exist for large Ot. As the packet creation rate grows, this decorrelation
is shifted towards larger time diJerences.
A non-standard way to extract characteristic time scales results from the observation,

that the various curves of Fig. 6 for diJering packet creation rates all appear to have
a similar functional form. This motivates the curve collapse

ri(Ot) =
[
f

(
Ot

Tcollapse(�)

)]�

; (16)

where the condition ri(Ot = 0) = 〈n2i (t)〉=〈ni(t)〉2 Cxes the exponent to �= ln(〈n2i (t)〉=
〈ni(t)〉2)=lnf(0); for later convenience we choose f(0) = 2. A suitable tuning of
Tcollapse(�) then leads to a perfect curve collapse; see the inset of Fig. 6. The ex-
tracted time scale is shown in Fig. 7 as a function of the packet creation rate. Another,
now standard way to extract a characteristic time scale uses∫ ∞

0
(r(t)1=� − 1) dt = (r(0)1=� − 1)Tint (17)

to deCne an integral time scale Tint. Its dependence on the packet creation rate is also
shown in Fig. 7.
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Fig. 6. Single-node temporal correlation ri(Ot) for the most-critical node of a const-P reference network
with N = 100, obtained from a simulation covering 5 × 105 time steps. DiJerent line types correspond
to diJerent packets creation rates, all below �crit = 0:0101. The inset shows the curve collapse (16) after
appropriate rescaling.

Fig. 7. Time scales Tcollapse and Tint as a function of the packet creation rate. The same const-P reference
network with N = 100 has been used as in the previous Cgure. The results directly obtained from a data
tra4c simulation are shown with Clled symbols. The curves with open symbols have been derived from
Eq. (21) with in- and out-7ux rates sampled from data tra4c simulations. Note that the two time scales
have been normalized such that Tcollapse=int = 1 for � = 0:0095.
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3.5. Single-node correlation time: analytic estimate

We will now give some semi-analytic understanding of the simulation Cndings of
the previous subsection. In the rearranged form,

p(n; t + 1)− p(n; t)

=
(�out − �in)

2
[p(n+ 1; t)− p(n− 1; t)]

+
(�out + �in)

2
[p(n+ 1; t)− 2p(n; t) + p(n− 1; t)] ; (18)

the rate equation (5) transforms into a Fokker–Planck equation

9p(n; t)
9t =−(�in − �out)

9p(n; t)
9n +

(�in + �out)
2

92p(n; t)
9n2 : (19)

The invoked continuum limit from discrete to continuous n is justiCed for long queue
lengths 〈n〉�1, which is the case when the in- and out-7ux rates �in ≈ �out are almost
the same. The latter also determine the drift and diJusion coe4cients

− �= �in − �out ; D = �in + �out (20)

which are both constant. Note, that a minus sign has been introduced in the deCnition of
the drift coe4cient, which guarantees �¿ 0 for the subcritical tra4c regime �in ¡�out.
The solution of this Fokker–Planck equation with given initial condition n(t=0) and

re7ecting boundaries at n = 0 and ∞ requires an expansion into eigenfunctions [25].
The eigenfunction method also allows a direct calculation of the correlation function.
This calculation is rather lengthy, but straightforward. Details are given in Ref. [24].
Here, we state only the Cnal result

〈n(t)n(0)〉= 1
4

(
D
�

)2

+
4



(
D
�

)2

e− �2

2D t
[


16

M
(
3
2
;−1

2
;
�2

2D
t
)

+
2
3

√



(
�2

2D
t
)3=2

M
(
3;

5
2
;
�2

2D
t
)]

; (21)

expressed in terms of con7uent hypergeometric functions [26]. It comes with the prop-
erty 〈n2(0)〉=2〈n(0)〉2, which is in agreement with the simulation results of the previous
subsection for packet creation rates close to the critical one (see again Fig. 6), where
〈n〉�1. It also explains the choice f(0) = 2 introduced for the curve collapse (16).
Expression (21) only depends on the in- and out-7ux rates (20), otherwise its func-

tional form is Cxed. Upon taking the sampled �in
i and �out

i from the generic data
tra4c simulation, expression (21) can be compared with the directly sampled correla-
tion functions; this is done in Fig. 8. For all packet creation rates, the decorrelation
time obtained via (21) is systematically somewhat larger than for the directly sam-
pled correlation functions. A possible reason for this discrepancy might be the invoked
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Fig. 8. Comparison of the rescaled correlation functions (ri(Ot))1= of Fig. 6 with the analytic expres-
sion (21). For the latter, the in- and out-7ux rates have been sampled from the same generic data tra4c
simulations, the same network realization and the same node, which have been used for the former.

rescaling (ri(Ot))1= of the latter. However, the functional form looks the same and
also the respective time scales Tcollapse and Tint as a function of the packet creation
rate show a good agreement with the previously obtained results of Fig. 7. The overall
good correspondence between the simulation and the semi-analytic results more or less
explains the increase of the correlation time scales with growing packet creation rate
as an inherent feature of the underlying single-node queuing behavior.

4. Routing and congestion control

From the previous section on the generic data tra4c with shortest-path routing we
have learned several things. It is the most critical node, which gets overloaded Crst
among all other nodes and which determines the critical packet creation rate of the
overall network. This limits the network’s e2e-throughput capacity to �critN . More-
over, for network loads close to �crit a good fraction of nodes belonging to the greater
neighborhood of the critical one will also come with large queue lengths ni�1. This
congestion cluster then gives rise to large average e2e-time delays and to large 7uctu-
ations of the latter, which in turn result in large relaxation times. It is the goal of any
routing and congestion control to avoid such congested network areas and to detour
the data tra4c around. Such actions are likely to be rewarded with an increase of
the e2e-throughput capacity, a decrease of the average e2e-time delay as well as its
7uctuations and the related relaxation times. In this section we discuss three diJer-
ent routing and congestion controls of increasing sophistication. The Crst one exploits
the degeneracy of shortest e2e-routes. The other two approaches modify the distance
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Fig. 9. Average end-to-end time delay as a function of the packet creation rate for various routing and con-
gestion controls: SP, SPSQ, MACLCE with != 0, and memory-based MAC-distributed lowest-cost-estimate
(mMACLCE) with !=0:65. Respective generic data tra4c simulations have been run on an identical const-P
network realization of size N = 100.

metric to include each node’s congestion state and adapt the routing decisions ac-
cording to updated cost estimates, which are locally exchanged with every MAC-
blocking.

4.1. Simple congestion control with degenerated shortest paths

The shortest-path (SP) routing used in Section 3 does not take advantage of the
route degeneracy between an arbitrary sender and a Cnal receiver. Randomly choos-
ing one out of several degenerate shortest routes for each new packet will already
give some relief to the most congested nodes. However, a bias on the actual conges-
tion state would do even better. A simple extension in this direction is shortest-path
shortest-queue (SPSQ) routing. Instead of randomly choosing one next-hop neighbor
out of the several degenerate shortest routes that speciCc node is picked which in
addition has the shortest queue length in its buJer for this very moment. If more
than one node qualiCes, one of them is again picked randomly. Note, that in or-
der to make such a routing decision, the forwarding node needs to have information
from its neighbors about their congestion state. A very elegant way to provide this
information without sending additional control packets is to include it into the MAC-
blockings, in which the neighbors had been actively involved during previous one-hop
transmissions.
As can be seen from Figs. 9–11, the simple SPSQ routing and congestion control

already leads to some noticeable improvements. The critical packet creation rate, where
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Fig. 10. Distribution of the end-to-end time delay for various routing and congestion schemes and packet
creation rates. For �=0:0095 the schemes SP, SPSQ and MACLCE are compared; for �=0:012 and 0.014
only the MACLCE scheme is shown. Generic data tra4c simulations have been run on an identical const-P
network realization of size N = 100.

Fig. 11. Single-node correlation function ri(Ot) for various routing and congestion controls and packet
creation rates. Respective generic data tra4c simulations have been run on an identical const-P network
realization of size N = 100 and also the picked node has been the same for all cases.

the average e2e-time delay diverges, increases. The tail of the e2e-time-delay distribu-
tion is suppressed to some extend. Last but not least, also the correlation time scales
have become smaller.
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4.2. Congestion control with instantaneous adaptive routing

If a node would have the complete information on the instantaneous congestion state
of all other nodes belonging to the network, then it could determine the shortest route
to the intended Cnal recipient with a modiCed metric, which does not only take the
hop distance into account, but also counts the queue lengths of all inbetween nodes.
However, Crst of all the node does not have this information, and even if it would,
then the shortest path at decision time needs not be equal to the shortest path for
delivery due to the always changing congestion state of the network during delivery
time te2e. Instead, the node could try to get some sort of cost estimate it takes to send
the packet to the Cnal destination via this or that neighbor, and to constantly update
these estimates. This idea is already known as asynchronous vector distance routing
[27] and has found its way into Internet routing at the autonomous-system level. Next,
we give an outline of this approach, modiCed and tuned to the speciCcity of wireless
multihop ad hoc communication.
Pick a node i that has a packet to forward to the Cnal destination f. Node i has to

decide to which neighbor j∈Ni it is going to forward the packet. For each of them
it has a cost estimate Wif;j. It chooses node jmin, providing the lowest cost estimate
Wif;jmin = minj∈Ni Wif;j =Wif. Before i starts transmitting its packet to jmin, it has to
MAC-block its neighbors. Hand-in-hand with the blocking signal it tells them about the
minimum cost Wif and its future queue length ni− 1. While then being blocked, those
neighbors have enough time to process this information and update their estimated cost

Wjf; i ← wji +Wif (22)

to send a packet via i to f during a future time step. wji is the cost to send a packet
from j to its neighbor i. Since the queue length ni− 1 is a reasonable measure of how
busy node i is [27,28], we set

wji = (ni − 1) + 1 ; (23)

the one at the end takes care of the hop-distance between the two nodes. As the
intended receiver of i’s to-be-transmitted packet, node jmin also blocks its neighbors
k ∈Njmin and takes this chance to inform those about its estimated cost Wjminf and its
future queue length njmin + 1. Those neighbors then process this information analogous
to Eq. (22), but with the modiCcation

wkjmin = (njmin + 1) + 1 (24)

for the future link cost.
Updating the estimated costs after receipt of an extended MAC-signal appears to be

a natural thing for wireless multihop ad hoc communication. It couples the MAC-layer
and the routing layer in a very elegant way and gives rise to a distributive congestion
control. Note that beyond MAC no additional congestion control signals have to be
exchanged. This is in contrast to other communication networks like the Internet, which
Crst probe the congestion state with additional dedicated signals before they adapt to
it.
A few more technical words are in order. The congestion information distributed by

the MAC-signals may either include only those cost estimates belonging to the Cnal
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destination of the currently transmitted packet, or it may include much more than this,
namely the cost estimates to every single node of the network. Both cases certainly
represent two extremes, the former focusing on keeping the distributed signal small
and the latter allowing for a faster spread of the congestion information over the entire
network. For the remainder of this paper, we will only concentrate on the latter case.
Implementing the proposed congestion control for the generic data tra4c simulations,

requires to specify the initialization. The initial cost estimates have been set to

Wif;j =




1 (f∈Ni) ;

0 (i = f) ;

∞ (else) :

(25)

The simulations themselves then have shown that for not-too-small packet creation
rates the number of time steps it takes to distribute the initial cost estimates over the
entire network and to reach a kind of steady state is of the order of the network size
N . Furthermore, test simulations have revealed that a relaxation of the deterministic
lowest-cost-neighbor choice for forwarding the data packet, such that also the other
higher-cost neighbors become eligible in some probabilistic form, always leads to a
degradation in performance.
The simulations of the generic data tra4c for the routing and congestion control

with the MAC-distributed lowest-cost estimates (MACLCE) have turned out to be
quite time-consuming. For this reason we present results only for one realization of a
constant-P network with size N = 100. The simulation run took 5 × 105 time steps.
As a function of the packet creation rate the average e2e-time delay is illustrated in
Fig. 9. For moderate packet creation rates the various routing and congestion schemes
SP, SPSQ and MACLCE perform about equally well, but when it comes to the critical
regime, the control with MAC-distributed lowest-cost estimates yields by far the largest
critical packet creation rate. Although more packets are present in the network, such a
routing and congestion scheme is able to handle packet creation rates, exceeding the
maximum rate obtained with the classical shortest-path routing by a factor of about
1.4. The inset of this Cgure shows the number of active packets M (t) = Nactive(t) for
MACLCE at �=0:014, indicated by the arrow. There is no linear dependence on time,
which is a clear sign that the network is still operating in the subcritical regime.
Another goal for the new routing and congestion algorithm has been to reduce the

pronounced tail in the distribution p(te2e) of the end-to-end time delay. Fig. 10 demon-
strates that for � = 0:0095, which is very close to the SP critical packet creation rate,
the MACLCE and SPSQ distributions are about the same and, when compared to the
SP distribution, come with a suppressed tail. Note, that log-scales have been used in
Fig. 10. For larger packet creation rates, where the SP and SPSQ schemes are already
in the supercritical regime, the routing and congestion control with MACLCE results
in rather 7at distributions, which come with a relative sharp cutoJ at larger end-to-
end time delays. Of course, this cutoJ increases with the network load.
Compared to the SP routing signiCcant changes can be observed in the distribution

p(ni) for the single-node queue length; see Fig. 12. At �=0:0095 the SP distribution is
a broad exponential (see also bottom of Fig. 4), whereas the MACLCE distribution is
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Fig. 12. Single-node distribution p(ni) of the queue length for various routing and congestion controls and
packet creation rates. Respective generic data tra4c simulations have been run on an identical const-P
network realization of size N = 100 and also the picked node has been the same for all cases. For the
MACLCE-curve with � = 0:0125 the inset illustrates a Ct with the Gamma-distribution (26).

conCned to basically ni6 3. For larger packet creation rates the MACLCE distributions
become bell-shaped. Their mean and variance increase with �. Good Cts can be obtained
with a two-parametric continuous Gamma distribution

pgamma(n) =
1

$(a)ba
na−1e−n=b ; (26)

consult the inset Cgure. For MACLCE-controlled networks close to �crit this bell-shaped
single-node queue-length distribution is a result of the 7exible routing scheme, which
adapts well to the current congestion state, and is key to their improved operational
functionality.
A direct consequence of the bell-shaped distributions p(ni) is that 〈n2i (t)〉 ≈ 〈ni(t)〉2.

This then keeps the correlation function (15) close to one, even for small Ot. Thus
with the packet creation rate approaching its critical limit, the single-node temporal
correlations are expected to be drastically reduced. The simulation results illustrated in
Fig. 11 conCrm this view.

4.3. Congestion control with memory-based adaptive routing

So far the cost estimate Wif;j of node i is updated according to Eq. (22) as soon as
the neighboring node j∈Ni MAC-reports its change of either wij or Wjf. This imme-
diate update might be too fast to be optimal. It could be wise to keep at least in parts
some of the old cost estimate. Introducing a kind of memory parameter 06 !6 1, a
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proposition for a modiCed update rule would be

Wif;j ← !Wif;j + (1− !)[wij +Wjf] : (27)

For !¿ 0 a fraction of the old cost estimate is kept as a part of the new estimate.
This modiCcation includes a memory of formerly used routes that are only updated
if signiCcant changes in the network’s congestion state have occurred. This approach,
which is inspired by reinforcement learning [27], is known as Q-routing [29].
The simple extension (27) proved to cause a small but clearly measurable fur-

ther improvement in network performance. As indicated in Fig. 9 the memory-based
mMACLCE scheme with ! = 0:65 increases the critical packet-creation rate a little
further when compared to the instantaneous MACLCE scheme with !=0. It turns out
that ! ≈ 0:65 is the optimal choice. As a function of ! the critical packet creation rate
Crst increases for values rising from !=0 to 0.65, takes its maximum at ! ≈ 0:65 and
then decreases for values above. It is intuitive that in case of a strong memory (! ≈ 1)
the update rule collapses and only keeps very old and out-fashioned cost estimates,
which are not suited to adapt to the always changing congestion state of the network.

5. Conclusion and outlook

This paper has focused on routing and congestion control in wireless multihop ad hoc
communication networks. Simulations with random data tra4c have been accompanied
with analytic estimates, whenever possible. The focus has Crst been on shortest-path
routing, to understand certain data tra4c characteristics like end-to-end time delay
and correlation time scales, and to Cnd Cngerprints of congestion once the network
is operating close to its critical load. A scaling law has been found for the average
end-to-end time delay with respect to network size, which also revealed a dependence
on the underlying network topology. In a second step and going beyond shortest-path
routing, a distributive routing and congestion control has been proposed, which cou-
ples the MAC- and routing layer of wireless multihop ad hoc communication. Before
one-hop forwarding a packet, the sending as well as receiving node MAC-block their
respective neighbors and distribute information about their congestion state and routing
cost estimates, which the latter then use for updates. This distributive scheme turned
out to be very e4cient. Compared to shortest-path routing, the critical network load
increased noticeably. Routes are constantly adapting to the prevailing congestion state
of the network. With other words, routes selforganize themselves.
The proposed prototype routing and congestion control needs of course further testing

and extensions. Other than simple random data tra4c has to be looked at, such as for
example selfsimilar [30], self-organized-critical [31] and spatially localized. Congestion
updates with diJerent forms of cost metrics are important to investigate as well as the
sparsity issue, i.e., which information is important to be distributed to other nodes
and which is negligible. At the end, the biggest challenge is yet to come, to turn good
ideas into real-life-functioning implementations. This is where Physics and Engineering
should meet again.
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