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Summary

Micro array technology allows the simultaneous analysis of ten-thousands of genes. Most often, how-
ever, the analysis is based on a few replications only. This causes problems in the application of classi-
cal multivariate tests which require sample sizes exceeding the number of observed variables. To over-
come these problems, a class of stable, multivariate procedures based on the theory of spherical
distributions has been proposed by L�uter, Glimm, and Kropf (1996). These methods allow the use of
multivariate information of many genes for testing differential gene expression. Furthermore, multiple
testing procedures based on these principles have been constructed (e.g., Kropf, L�uter, 2002), which
strictly keep the familywise type I error rate (FWE).

In this paper, these methods have been generalized to allow for the use of full multivariate informa-
tion on expression intensities of individual genes analysed by the Affymetrix GeneChip technology. In
contrast to the usual strategy, which constructs an expression score for each gene, based on averaging
of the different oligonucleotide (perfect- and miss-match) information, and then performs some test on
these summarized expression values, we suggest using a test procedure based on the complete multi-
variate perfect match information. We show that a multiple FWE-controlling procedure for normally
distributed data proposed by Westfall, Kropf, and Finos (2004), can be generalised to a more powerful
procedure based on left-spherically distributed scores derived from the perfect match information, with-
out losing the FWE-controlling property.

To illustrate the proposed test procedures, which have been implemented in the statistical program-
ming environment R, we analyse two already published data sets, comparing gene expression of tumour
and healthy tissues within identical patients and between two groups of different patients, respectively.
Using these examples, we demonstrated that the incorporation of the multivariate perfect match infor-
mation is superior to classical expression score based methods with respect to the number of identifi-
able differentially expressed genes.

Key words: Gene expression; Multiple tests; Score-based tests; Data-driven ordered hypo-
theses.

1 Introduction

Micro array technology allows the simultaneous analysis of tens of thousands of genes. In the sim-
plest case, a paired sample of gene expression values, e.g. tumour versus normal tissue of the same
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individual, is analysed for differential expression. Most often, however, the number of samples n (i.e.
hybridised micro arrays) is restricted to a few replicates, which causes problems in the application of
classical multivariate test procedures. These procedures require sample sizes exceeding the number p
of observed variables (i.e. genes). Facing this problem, the presented work will focus on the applica-
tion and extension of methods developed by L�uter, Glimm, and Kropf (1998) specifically for this
non-classical situation.

Testing of all individual genes accessible by the experimental procedure at a significance level a
appropriate for a single test (e.g. a¼ 0.05) would lead to an extremely high number of false positive
test results. Therefore, throughout this manuscript, a familywise type I error (FWE) in the strong
sense will be considered. Keeping the FWE in the strong sense means, that irrespective of the number
of true null-hypothesis, the probability of ending up with at least one false positive test decision is
restricted to a given significance level.

Let us first consider the so called one-sample situation. Here, one has n independent, identically
distributed (iid) p-dimensional sample vectors (which might also be differences from corresponding
sample elements of two dependent samples):

xj ¼
xj1

..

.

xjp

0
B@

1
CA � Npðm;SÞ ; j ¼ 1; . . . ; n

with expectation m ¼
m1

..

.

mp

0
B@

1
CA and covariance matrix S ¼

s11 � � � s1p

..

. . .
. ..

.

sp1 � � � spp

0
B@

1
CA.

The data matrix subsuming all p-dimensional sample vectors x0j (j ¼ 1; . . . ; n) is denoted by

X ¼
x11 � � � x1p

..

. . .
. ..

.

xn1 � � � xnp

0
B@

1
CA :

The multiple test procedures for the local hypotheses Hi : mi ¼ 0 ði ¼ 1; . . . ; pÞ treated in the sequel,
are based on a class of global multivariate tests given in L�uter, Glimm, and Kropf (1996). This
article also provides the proof of the following theorem.

Theorem 1 Consider the random matrix X as above under the global null hypothesis H : m ¼ 0.
Let d be a p-dimensional weight vector and D a p� q weight matrix (q � min (p, n� 1)), which
depend on X only through the sums of products matrix W ¼ X0X (with the additional restriction that
rank (Xd) = 1 or rank (XD) = q, both with probability 1). Then for

z ¼
z1

..

.

zn

0
B@

1
CA ¼ Xd and Z ¼

z1

..

.

zn

0
B@

1
CA ¼ XD

the following statements hold:

1. The score vector z and the score matrix Z are both left-spherically distributed.

2. The classical t-test for the univariate scores t ¼
ffiffiffi
n
p

�zz
sz

with �zz ¼ 1
n

z01n (1n is a vector consisting of

n ones) and s2
z ¼

1
n� 1

ðz0z� n�zz2Þ provides an exactly t-distributed statistic with n� 1 degrees
of freedom.

3. Analogously, with T2 ¼ n�zz0S�1
z �zz, where �zz ¼ 1

n
Z01n and Sz ¼

1
n� 1

ðZ0Z� n�zz�zz0Þ, the statistic

F ¼ n� q
ðn� 1Þq T2 has an exact F-distribution with q and n – q degrees of freedom.
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Applying these results, Kropf and L�uter (2002) have proposed the following multiple procedure for
testing the univariate local hypotheses Hi, which strictly keeps the familywise type I error level a:

Procedure I:

1. Sort the variables for decreasing values of wi ¼
Pn
j¼1

x2
jiði ¼ 1; . . . ; pÞ.

2. Carry out, in this order, the usual one-sample t-tests for the variables at the unadjusted error
level a as long as significance occurs. Stop at the first non-significant test.

The proof that this procedure keeps the FWE in the strong sense, despite the data-driven ordering of
variables, uses Theorem 1 with specific weight vectors. These have weight 1 for the variable with
maximum value of wi and 0 otherwise. This induces a degeneration of the multivariate test to an
univariate one using the gene which occupies the key position in Procedure 1. Please note that the wi

are the diagonal elements of the matrix W. For more details of the proof we refer to the above cited
paper. The basic idea underlying the ordering in Procedure I is the decomposition

Pn
j¼1

x2
ji ¼ n � �xx2

i þ
Pn
j¼1
ðxji � �xxiÞ2 ¼ s2

i ðt2
i þ n� 1Þ ;

where �xxi and si denote the usual variablewise mean and standard deviation, and ti ¼
�xxi

si

ffiffiffi
n
p

the corre-

sponding univariate test statistic. Assuming the variances to be approximately equal, variables with
higher absolute means and, therefore, more extreme t-values, will have increased chances to be in the
first positions after sorting and to be detected as significant in the test procedure.

The assumption of approximately equal variances in the p variables may appear very restrictive,
however, as discussed by Schuster and Kropf (2002) it is rather natural, e.g. in the context of repeated
measurements. Furthermore, such an assumption is often achievable by a suitable non-linear transfor-
mations of the data. In the context of gene-expression data (see example below), a logarithmic trans-
formation may yield approximately normal variables with roughly equal variances.

If variables with increased variances and no effects in the expectations occur, they may cause an
early stopping of the procedure. To reduce this risk, Westfall, Kropf, and Finos (2004) proposed using
the same sums of squares wi (as in the above procedure) to weight the raw P-values in a weighted
Bonferroni-Holm procedure (Holm, 1979), which strictly keeps the familywise type I error level a:

Procedure II:

1. Calculate the P-values Piði ¼ 1; . . . ; pÞ for the usual unadjusted t-tests for each of the p vari-
ables.

2. For each variable, determine the sums of squares values wi as above and the weights gi ¼ wh
i for

a fixed value h � 0.
3. Calculate the weighted P-values Qi ¼ Pi=gi and sort the variables for increasing values:

Qi1 � Qi2 � � � � � Qip or Qð1Þ � Qð2Þ � � � � � QðpÞ, respectively. Define the index sets
Sj ¼ fij; ijþ1; . . . ; ipgðj ¼ 1; . . . ; pÞ.

4. The ordered hypotheses HðjÞ (j ¼ 1; 2; . . .) are rejected as long as QðjÞ �
aP

h2Sj

gh
.

Stop at the first j yielding a higher value QðjÞ.

If h equals zero, this weighted Bonferroni-Holm procedure (Procedure II) coincides with the classi-
cal Bonferroni-Holm method. Furthermore, as shown previously in Westfall and Krishen (2001) for
the case of fixed weights, Procedure II converges to Procedure I if h tends to infinity. Therefore, the
choice of a large h is appropriate if the variances are expected to be homogenous to a high degree. In
contrast, small values of h are preferable for a considerable expected level of heterogeneity of the p
variances. (see also Discussion).

To compare two independent samples xðmÞj � NpðmðmÞ;SÞ (j ¼ 1; . . . ; nm; m ¼ 1; 2) (two-sample si-
tuation) with expectations mðmÞ ¼ ðmðmÞ1 ; . . . ;m

ðmÞ
p Þ0 and common covariance matrix S, the local null
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hypotheses Hi : m
ð1Þ
i ¼ m

ð2Þ
i (i ¼ 1, . . . , p) are tested in the corresponding two-sample t-tests and the

diagonal elements wi ¼
P2
m¼1

Pnm

j¼1
ðxðmÞji � �xxiÞ2 (�xxi is the total mean of the i-th variable over all

n ¼ n1 þ n2 sample elements) of the sums of products matrix W ¼ ðX � �XXÞ0 ðX � �XXÞ with �XX ¼ 1n �xx
0

and �xx ¼ 1
n

1
0

nX ðn ¼ n1 þ n2Þ are used. The remaining parts of Procedures I and II are identical to

the one-sample case.
To determine the expression level of individual genes, the Affymetrix-type GeneChip1 technology

uses several different (about 16–20) oligo-nucleotide (oligo) measurements. For each oligo, two differ-
ent sequences (which differ in one base only), the so called perfect-match (PM) and the miss-match
(MM), are determined (Affymetrix, 2002). To estimate the corresponding expression level of the
genes, one usually contrasts these two types of matches and thus summarizes in some sense over the
oligos belonging to a given gene. Herein, all genes are treated according to one common rule. Subseq-
ently, the obtained expression values are used to ascertain differentially expressed genes.

In contrast to this approach, we propose here a test procedure which incorporates the total informa-
tion of all individual PMs into the test for differential gene expression, using individual, gene specific
rules for the construction of a multivariate expression score. Therefore, Procedures I and II are trans-
ferred into another multivariate context. Keeping the control over the FWE, we will use scores from
multivariate tests (e.g. principle component test or standardised sum test) proposed by L�uter et al.
(1996) as input for the above introduced multiple procedures. Summarizing the above statements, one
can say that the essential novelty of our approach is the use of data dependent, gene specific weights
rather than one common, gene independent rule in the construction of expression scores.

In the following section the derivation of the amended multiple procedures is described in detail.
Moreover, we provide the proof for its strong control of the claimed FWE criteria. Two examples using
published data are presented in Section 3, followed by a discussion in the last section. A technical
description of two R-routines for the application of the proposed procedures is outlined in the appendix.

2 Multiple Test Procedures with Parametric Multivariate Tests per Gene

Our approach is based on Affymetrix raw data values including the information of all oligos per gene
(i.e. cel-file level). It is assumed that the PMs follow a common multivariate normal distribution. Let
k be the number of genes and pi the oligos number of gene i. From this, it follows that the total

number of PMs is given by p ¼
Pk
i¼1

pi.

Firstly, we consider the one-sample situation, where the data usually represent difference values from
two conditions in the same individual. The column vector containing all pi PMs of individual j and gene i
is denoted by xji (j = 1, . . . , n; i = 1, . . . , k). Thus, the whole vector for individual j is composed as

xj ¼
xj1

..

.

xjk

0
B@

1
CA � Npðm;SÞ ðj ¼ 1; . . . ; nÞ

with expectation m ¼
m1

..

.

mk

0
B@

1
CA and covariance matrix S ¼

S11 � � � S1k

..

. . .
. ..

.

Sk1 � � � Skk

0
B@

1
CA.

Again, the n sample vectors are summarized to the n� p data matrix X ¼ ðX1 � � �XkÞ with the
transposed vectors xj as rows, and the total sums of products matrix W is given by

W ¼
W11 � � � W1k

..

. . .
. ..

.

Wk1 � � � Wkk

0
B@

1
CA ¼ ðX1 � � �XkÞ0 ðX1 � � �XkÞ ¼ X0X :
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Now, the local hypotheses Hi : mi ¼ 0 (i = 1, . . . , k) are multivariate and are treated according to
Theorem 1. The scores derived in these tests are then used in Procedures I and II in the same manner
as the single variables previously.

Here, we will consider four different choices for the weight vectors from Theorem 1 (for details see
L�uter et al., 1996 or Kropf, 2000). The weight vector for gene i (denoted by ci, i ¼ 1; . . . ; k) is
obtained for

1. the non standardized principle component (NPC) test as the eigenvector ci corresponding to the
largest eigenvalue of the eigenvalue problem W iici ¼ lci with c0ici ¼ 1;

2. the standardized principle component (SPC) test as the eigenvector ci of the largest eigenvalue of
the eigenvalue problems W iici ¼ Diag ðW iiÞ ci with c0i Diag ðW iiÞ ci ¼ 1;

3. the covariance sum (CS) test as ci ¼ ½Diag ðW iiÞ��1 W ii½Diag ðW iiÞ��1=2 1pi ;
4. the standardised sum (SS) test as ci ¼ ½Diag ðW iiÞ��1=2 1pi :

To ensure that genes with balanced increased and decreased oligo measurements are not counted as
differentially expressed, the weights ci are transformed to the modified form di by:

di ¼ ðdliÞl¼1; ...; pi
with dli ¼

jclijPpi

s¼1
jcsij

; l ¼ 1; . . . ; pi; i ¼ 1; . . . ; k :

Using the transformed weights, the pi-dimensional data subvectors xji are subsumed into a score by
zji ¼ d0ixji. The one-sample t-test with the score values zji (j ¼ 1, . . ., n) now yields the unadjusted
P-value Pi for gene i (i ¼ 1, . . ., k). Using the following theorem one can formulate generalized
versions of the multiple test Procedures I and II.

Theorem 2 Procedures I and II strictly meet a given FWE criteria if applied to left-spherically
distributed scores zij.

To indicate the different assumptions (mulivariate normal and left-spherical), Procedures I and II
will be denoted as Procedure I0 and II0, respectively, if applied to left-spherically distrubuted scores.

The subsequent proofs are extensions of the proofs given for Procedures I and II in Kropf and
L�uter (2002) and Westfall et al. (2004), respectively.

Proof of Theorem 2, Procedure I0 Let M0 ¼ fi j mi ¼ 0; i 2 f1; . . . ; kgg ¼ fi1; . . . ; ik0g of size k0

be the index set of the true local null hypotheses, i.e., of all those genes with expectation zero in all
oligos, and let X0 and W0 be the corresponding submatrices of X and W, respectively. The case of
empty M0 can be neglected because no type I errors can occur then. All corresponding weight vectors
di1 ; . . . ; dik0

are summarized into the weight matrix

D0 ¼
di1 � � � 0

..

. . .
. ..

.

0 � � � dik0

0
B@

1
CA :

As the matrix X0 consists of iid multivariate normal row vectors with expectation zero, and all four
weight versions (incl. transformation from ci to di) use the data only through the corresponding sums
of products matrix W0, we are in the framework of Theorem 1. Therefore, the whole matrix
Z0 ¼ X0D0 is left-spherical as well as each of its columns which correspond to the scores in Proce-
dures I0 and II0. Thus, as shown in L�uter et al. (1998), Theorem 1 can be applied to the scores in the
same way as to the raw data before.

Let i0 denote the index of the score with maximum wi from all scores from M0 (uniquely deter-
mined with probability 1). Then a test according to Theorem 1 with the scores from M0 and with the
weight vector

d ¼ ðdiÞi¼1;...; k0
; where di ¼

1 for wi ¼ max
l¼1;...; k0

wl

0 else

(
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exactly keeps the type I error. That means that the local null hypothesis for the first score after sorting
would be accepted with probability 1� a and the procedure would stop before any type I error occurs, if
we would confine the procedure to those scores from M0. Actually, M0 is unknown, and the sorting
includes all scores. Therefore, the order obtained within M0 is filled up with additional scores. This does
not influence the tests with the scores within M0, but the tests for the additional scores (which cannot
produce type I errors per definition) make the procedure more conservative if k0 < k.

Proof of Theorem 2, Procedure II0 With the same notations as above, we consider the conditional
distribution of Z0 for fixed Z00Z0. According to the theory of spherical distributions, this conditional
distribution is again left-spherical. Therefore, the tests with the scores from M0 (columns of Z0) are
again exact level a tests. If we additionally notice that the sums of squares wi used in Procedure II0 as
well as the weights gi are fixed for all i 2 M0 in this conditional situation, then we can state that

P
Pi

gi
� aP

m2M0

gm

0
@

1
A ¼ P Pi �

agiP
m2M0

gm

 !
¼ agiP

m2M0

gm
for all i 2 M0 :

Finally with gm � 0 ðm ¼ 1; . . . ; kÞ,

P min
i2M0

Pi

gi
� aPk

m¼1
gm

0
B@

1
CA � P min

i2M0

Pi

gi
� aP

m2M0

gm

0
@

1
A ¼ P

[
i2M0

Pi

gi
� aP

m2M0

gm

0
@

1
A

0
@

1
A � P

i2M0

agiP
m2M0

gm
¼ a :

As this is true for arbitrary, fixed matrices Z00Z0, it is true for the unconditioned distribution as well.
Therefore, again the test for the first score that could produce a type I error accepts the corresponding
local null hypothesis and makes the procedure stop with probability 1-a, so that the multiple type I
error is a for k0 ¼ k or even smaller.

In the comparison of two independent samples of sizes n1 and n2, respectively, we proceed quite
analogously as outlined in the introduction for the original Procedures I and II:

The sample vectors are multivariate normal, i.e. xðmÞj � NpðmðmÞ;SÞ (j ¼ 1; . . . ; nm; m ¼ 1; 2) with

expectations mðmÞ ¼
m
ðmÞ
1

..

.

m
ðmÞ
k

0
B@

1
CA and common covariance matrix S.

The local null hypotheses considered here are Hi : m
ð1Þ
i ¼ m

ð2Þ
i (i ¼ 1, . . . , k). Then the sums of

products matrix W and its submatrices Wii are defined by

W ¼
W11 � � � W1k

..

. . .
. ..

.

Wk1 � � � Wkk

0
B@

1
CA ¼ ðX � �XXÞ0 ðX � �XXÞ

with n ¼ n1 þ n2, �xx0 ¼ 1
n

1
0

nX, and �XX ¼ 1n
�x0x0.

Furthermore, the one-sample t-tests are replaced by the two-sample t-tests for the scores. Otherwise,
the procedures are identical to the one-sample case. The proofs use straightforward extensions of the
corresponding proofs in Kropf and L�uter (2002) and in Westfall et al. (2004), respectively.

3 Worked Examples

3.1 One-sample situation

The first given example will focus on the one-sample situation. The clinical data (Eszlinger, Krohn,
and Paschke, 2001) consists of 15 patients with autonomously functioning tyroid nodules (AFTNs).
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For each patient the differential expression of 12625 genes between AFTN and surrounding tissue has
been determined using Affymetrix GeneChips U95Av2. The raw data is available in cel-file format.
Each gene is characterized from between 16 and 20 probe pairs consisting of perfect match (PM) and
miss match (MM) information. According to the intent of this work, the following analysis is based
on the PM information only and not as usual on a summarized expression score per gene. The applied
procedures are implemented in the statistical programming language R (Ihaka and Gentleman, 1996;
www.R-project.org) using the Bioconductor package (www.bioconductor.org). A detailed technical de-
scription of these procedures is given in the Appendix.

Our analysis is based on AffyBatch objects obtained from the raw data by application of quantil-
normalization without background correction. For the sake of comparison of our results with “classi-
cal” methods, summarized expression scores per gene were also calculated using the R-method expres-
so with the options medianpolish and pmonly. To approximately meet the criteria of multivariate nor-
mality and variance homogeneity, all expression values (PM’s as well as expression scores) have been
logarithmized. The expression ratio of trait and surrounding tissue of a specific gene is expected to be
one, if its expression is not influenced be the trait. Therefore, the difference of the logarithms will be
tested against zero. In order to check the robustness of the results with respect to the choice of raw-
data transformation, we repeated the analysis using an arsinh transformation instead of the logarithmic
transformation. Because the results are nearly identical, we restricted our presentation to the log-trans-
formed data. The familywise significance level has been set to a = 0.05.

Because the test results of Procedure I are contained as a special (limiting) case in Procedure II
(see Section 1) we will give only results obtained by the application of Procedures II and II0. Proce-
dure II will be applied for the “classical” case of summarized expression scores per gene (denoted as
“control”). In addition, the proposed total-PM-based Procedure II0 has been applied to the four pre-
viously described multivariate methods.

Figure 1 shows the number of differentially expressed genes determined as significant for values of
h between 0 and 6. It should be noted again that all given results strictly meet the claimed FWE
criteria. The results demonstrate that two versions of the proposed total-PM-based procedure (NPC
test, CS test) are uniformly superior to the classical t-test approach in the sense of finding more

Biometrical Journal 46 (2004) 6 693

Figure 1 Results of Procedures II and
II0 for example data in the one-sample
setting. The numbers of significant (ac-
cording to FWE) differentially expressed
genes are given depending on parameter
h. Control results have been obtained by
application of the classical expression
score (method: medianpolish) based t-test
within Procedure II.
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significant genes without violating the FWE criteria. It is hypothesised that this superiority can be attrib-
uted to more effective utilization of the total multivariate information contained in the individual PMs.

In this example an h-choice of 1.3, giving 88 (Procedure II) and 130 (NPC in Procedure II0) signifi-
cant genes, respectively, would be optimal. Within these two sets of significant genes, there is a
common subset of 78 genes. Furthermore, we would like to emphasize that the widely used Bonferro-
ni-Holm procedure (h¼ 0) is better than the choice of h� 4 including h¼1, i.e. Procedures I and I0

(not shown).
Concerning the different versions of Procedure II0, one recognizes that in this example the covar-

iance sum test and the non standardized principle component test are qualitatively similar, whereas the
standardized principle component test is noticeably worse. The standardized sum test is even inferior
to the classical t-test within Procedure II and is only included for completeness. Its application is
discouraged.

It should be emphasized at this point, that the h must be chosen beforehand to strictly ensure the
FWE. If the sample size are not too small, we suggest using h ¼ 1 (see discussion below).

3.2 Two-sample situation

To demonstrate the application of the proposed test strategy in the two-sample setting we will use data
from lung cancer patients. This data set has been analyzed by Bhattacharjee et al. (2001) and the raw
data (cel-files) are freely available in the internet (www.genome.wi.mit.edu/MPR/lung). Using gene
expression profiles, Bhattacharjee et al. classified the adenomas into subcategories. In the following,
we will use the group of 6 small-cell lung cancers (SCLC) and the control group of 17 normal, non-
malignant lungs (NL).

To analyze which genes are differentially expressed between these two groups we will apply Procedure
II0 and for comparison Procedure II, bearing in mind that we must use the versions for two independent
samples. The pre-processing of the raw data has been carried out exactly as described in Section 3.1.

The results in Figure 2 show again the superiority of Procedure II0 (despite of the unfavourable SS
test version) in the region 0 � h � 3. h-values greater than 3 are not of specific interest because these
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Figure 2 Results of Procedures II and
II0 for (sample) data in the two-sample
setting. The numbers of significant (ac-
cording to FWE) differently expressed
genes are given depending on the para-
meter h. Control results have been ob-
tained by application of the classical ex-
pression score (method: medianpolish)
based t-test within Procedure II.
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will give results which are inferior to the classical Bonferroni-Holm procedure. The optimal h-choices
for both procedures are 0.8, resulting in 905 (Procedure II, h¼ 0.8) and 1096 (Procedure II0, NPC
test, h¼ 0.8) FWE-significant genes, respectively. The set of common genes in both groups contains
815 genes. Please notice, that in this example the NPC test will loose its superiority compared to the
classical t-test for h� 6. Furthermore, in this example the globally best performance is achieved by
the covariance sum test version of Procedure II0, which results in the specification of 1122 significant
genes at h¼ 1.

Again, to strictly meet the claimed significance level, the test method, including the h value, must
be chosen beforehand. Similarly, to the one-sample setting, the NPC test and the covariance sum test
would be preferential choices.

4 Discussion

As illustrated by the examples in the last section, it can be expected that the proposed total PM-based
multivariate test strategies commonly provide more satisfactory results than the “classical” methods
based on a summarized gene expression value. This is also affirmed by the application of these meth-
ods to further subgroups of the data set described by Bhattacharjee et al. (2001), e.g. the analysis of
21 squamous cell lung carcinomas und 20 pulmonary carcinoids. All five additional group compari-
sons showed a superiority (with respect to the number of FWE-significant genes) of Procedure II’
either using the NPC or the CS test method compared to the expression score (medianpolish) based
Procedure II (data not shown). Whereas no definite assessment about the preference between the NPC
and the CS test methods can be concluded from our results, the application of the SPC and the SS
methods are discouraged.

We would like to emphasize that the data compression of the total PM information into scores
according to the methods discussed in Section 2 may also be part of a multistage procedure (see
L�uter et al., 1998). i.e., the generation of further multivariate scores and, therefore, other analysis
procedures within the theory of spherical distributions can be based on these scores.

In contrast to our approach which uses PM information only, some authors have suggested using
perfect and miss-match information equally, irrespective of the non-matching base in the MM probes.
This approach is justified by the observation that even MM probes (which are supposed to have lower
binding affinities for the target sequence than the PM probes) produce signals noticeably above the
background level. Although the suggested procedures have been demonstrated for the use of PMs
only, they can gererally include both, PM and MM information, into the analyis. A similar test (in-
cluding PM and MM) has been proposed by Naef et al. (2002). In contrast to his proposal, our
approach is able to guarantee a strict control of the FWE criteria. The only assumption needed is that
of (approximately) multivariate normal distribution of the probewise data, which may be achieved by
suitable transformation. Although we have formally proven the preservation of the FWE criteria under
the specified assumptions, we carried out 500 replications for each of the two examples with ran-
domly permuted class labels. The proportion of replications with at least one significant gene was
below the nominal level of 5%, the maximum of all runs being 18/500 ¼ 0.036. Thus, these series
empirically support the validity of the theorems and the robustness for deviations from the parametric
assumptions.

The proof that the proposed procedures strictly meet a given family-wise error criteria is based on
the left-spherical distribution of the used score values. This property, however, is only guarantied (by
Theorem 1) for the given linear score. The use of linear scores may appear to be a restriction of the
method, however, it covers such important situations as a weighted average of the PMs or the contrast
of PMs and MMs. The analysis, whether specific nonlinear scores fulfill the left-spherical property
has not yet been performed.

As already mentioned in Section 2, the choice of h remains a critical problem. To strictly meet the
claimed FWE significance, it must be chosen before the application of the test procedure. If there is
prior knowledge from previously conducted or pilot studies, simulation methods can be applied in
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order to choose h. Otherwise, the choice of h ¼ 1, as in the example, may be acceptable for sample
sizes that are not too small.

It should be noted that the data pre-treatment (i.e. the applied normalization and background correc-
tion methods) can sensitively influence the results of the discussed test procedures. However, to focus
on the illustration of the new multivariate oligo-based test approach we restricted ourselves to one
fixed, widely used pre-treatment regime (quantile normalisation without background correction). A
detailed analysis of pre-treatment strategies and their influence on the resulting lists of differentially
expressed genes was omitted in the current work for reasons of brevity.

In addition to the advantages of the proposed strategy with respect to the number of detectable
differentially expressed genes, our approach has further potential. For example, it is known that the
different oligonucleotide probes show variable, sequence-specific hybridisation properties (Hekstra et
al., 2003; Binder et al., 2004). This information, which is expected to improve the sensitivity and the
correctness of gene expression measurements considerably in the future, could easily be incorporated
into the proposed multivariate total PM-based score.

5 Appendix

5.1 Usage of the R-implementation of Procedures I0 and II0

In the following the usage of two R-routines, which can be applied to realise the proposed test proce-
dures, is described. The implementation has been carried out under R version 1.8.1 (www.R-pro-
ject.org) and depends on the libraries Biobase and affy both of which can be obtained from
www.bioconductor.org.

Whereas mult.pm.t.test performs a multivariate version of the classical t-test, based on the total
information of all oligos per gene, mt.westfall realises the multiple testing algorithm described above.

The R-code of both routines can be obtained from the authors.

5.2 mult.pm.t.test

This function performs a multivariate version of the classical t-test, e.g. for testing differential gene
expression in Affymetrix-based micro array experiments using all perfect match information per gene.
It is based on the general theory of spherical tests (L�uter et al., 1998).

To apply mult.pm.t.test it is necessary to specify an AffBatch data object which contains the raw data
of all micro array experiments involved in the analysis. Furthermore, two factor objects must be defined.
One, the trait-vector, contains the information, which gene chip belongs to the control and the trait
measurements. The second object, the id-vector, contains the information which gene chip is assigned to
which individual. This is only relevant in the situation of testing dependent pairs of tissue samples in
identical individuals (two sample situation), however, for reasons of generality it should be specified.

Example 1 Testing of 5 dependent pairs of tissue samples, with array numbers 1 and 2, 3 and 4,
. . . , 9 and 10 containing the control and trait pairs of the individuals, respectively.

> trait <- factor(c(0,1,0,1,0,1,0,1,0,1))

> id <- factor(c(1,1,2,2,3,3,4,4,5,5))

Example 2 Testing differential gene expression between 4 arrays of control samples (the first four
in the Affybatch-object) and 3 arrays of independent trait tissue samples:

> trait <- factor(c(0,0,0,0,1,1,1))

> id <- factor(1:7)

The specification, whether a dependent or independent situation is considered, must be done using
the Boolean parameter dependence which is FALSE by default.
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The method argument specifies the method for determining the score function. It is possible to
choose among the following options (for a detailed description of these procedures see L�uter et al.
(1996)):

“npc” . . . non-standardized principle component test

“spc” . . . standardized principle component test

“ss” . . . standardized sum test

“cs” . . . covariance sum test

The last specific argument for this multivariate t.test procedure is oligo, which choses the included
probe types. Possible options are:

“pm” . . . use of perfect-match probes only

“mm”. . . use of miss-match probles only

“both” . . . use of perfect- and miss-match probes.

In addition to these arguments, mult.pm.t.test can be run with further t.test specific arguments as
there are alternative, mu, and two.sided (for details see R-help).

A typical call of mult.pm.t.test would, therefore, be

> mult.pm.t.test(affybatch.object, factor(c(0,0,0,1,1,1)), factor(1:6),
dependence=FALSE, method=“npc”, oligo=“pm”)

The return value of the procedure is a list containing the two components details and summary.
Whereas details is another list comprising the following components

test . . . a list of class “htest” containing identical components as the value of t.test{ctest}

w . . . sum of squares

z . . . vector of scores

�
(see notation in Section 2, procedure I0 and I00, respectively)

summary is a three column data.frame containing the gene (probe set) names, the raw P-values, and
the sum of square values, repectively.

5.3 mt.westfall

The function mt.westfall performs a multiple procedure to determine significance levels for local hy-
pothesis at a given familywise type I error rate (FWE) based on a weighted FWE-controlling method
introduced by Westfall et al. (2004).

There are three arguments to be specified for the application of mt.westfall: A data frame, contain-
ing a column of gene-wise raw P-values (compulsory column name: “pvalue”) and a column of corre-
sponding weights (e.g. sums of squares as in section 2; compulsory column name: “weight”), a para-
meter vector of h values for which the test procedure will be applied, and the familywise type I error
rate a. One possibility to obtain the data frame is the use of the summary component of the
mult.oligo.t.test result.

A typical call of mt.westfall using four different choices of h would be

> test.result <- mult.pm.t.test(affybatch.object, factor(rep(c(0,1),5)),

factor(c(1,1,2,2,3,3,4,4,5,5)), dependence=TRUE, method=“cs”)

> mt.westfall(test.result$summary, eta=c(0,1,10,100), alpha=0.05)
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The return value of mt.westfall is a list containing the following components:

eta . . . the actually applied h parameter
nsig . . . the number of significant genes (at the given familywise type I error rate)
genes . . . a four column data frame containing the names, the raw P-values, the adjusted

P-values, and the q-values (the weighted P-values from Procedure II0) of genes
determined as significant at the given familywise type I error rate a.
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