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ABSTRACT
Motivation: The power of microarray analyses to detect differential
gene expression strongly depends on the statistical and bioinformat-
ical approaches used for data analysis. Moreover, the simultaneous
testing of tens of thousands of genes for differential expression raises
the ‘multiple testing problem’, increasing the probability of obtaining
false positive test results. To achieve more reliable results, it is,
therefore, necessary to apply adjustment procedures to restrict the
family-wise type I error rate (FWE) or the false discovery rate. However,
for the biologist the statistical power of such procedures often remains
abstract, unless validated by an alternative experimental approach.
Results: In the present study, we discuss a multiplicity adjustment pro-
cedure applied to classical univariate as well as to recently proposed
multivariate gene-expression scores. All procedures strictly control the
FWE. We demonstrate that the use of multivariate scores leads to a
more efficient identification of differentially expressed genes than the
widely used MAS5 approach provided by the Affymetrix software tools
(Affymetrix Microarray Suite 5 or GeneChip Operating Software). The
practical importance of this finding is successfully validated using real
time quantitative PCR and data from spike-in experiments.
Availability: The R-code of the statistical routines can be obtained
from the corresponding author.
Contact: Schuster@imise.uni-leipzig.de

INTRODUCTION
High-density oligonucleotide microarray technology is increasingly
used for gene-expression profiling (Gershon, 2002), to define a
group of genes with differential expression between a variety of
experimental conditions. The power of such analyses depends not
only on the quality of array design and production, but also on
the statistical and bioinformatical approaches used to analyse the
data. Indeed, the application of different mathematical algorithms
can influence enormously the outcome of microarray data analysis,
e.g. by having different statistical power to detect significant differen-
tially expressed genes. Many practicing biologists are unaware of the
extent of this problem. Therefore, it is important not just to develop
strategies with optimal theoretical properties, but to demonstrate their
practical relevance by additional experimental tests.

Affymetrix GeneChips have become particularly prevalent within
the field of microarray gene-expression analysis and the results of

∗To whom correspondence should be addressed.

GeneChip experiments attract the attention of a wide spectrum of
life science researchers (Harrington et al., 2000). The common prac-
tice of analysing differential gene expression from GeneChip data is
based on normalized hybridization signals generated with the Affy-
metrix Microarray Suite (MAS) 5 software algorithms. This method
returns a single expression value per gene, condensing the inform-
ation from hybridizing up to 18 pairs of perfect match (PM) and
mismatch (MM) oligonucleotides (known collectively as a probe set)
to complementary mRNA. The subsequent simultaneous testing of
tens of thousands of genes for differential expression raises the ‘mul-
tiple testing problem’, increasing the probability of obtaining false
positive test results (Westfall and Young, 1993). To achieve more
reliable results, it is, therefore, necessary to restrict the family-wise
type I error rate (FWE) or the false discovery rate (FDR) by
application of adjustment procedures (Reiner et al., 2003; Storey
and Tibshirani, 2003). However, classical approaches, such as the
Bonferroni correction of genewise t-test results are highly conser-
vative and their application leads to a dramatic loss of statistical
power (i.e. a high number of false negative results), when testing
thousands of genes for differential expression.

In contrast to MAS5 and in agreement with alternative approaches
to microarray data analysis (Li and Wong, 2001; Irizarry et al.,
2003), we propose a procedure that employs the complete multi-
variate information from all PM oligonucleotides complementary to
an individual transcript. Our strategy, which is based on the the-
ory of spherical distributions (Läuter et al., 1998), strictly maintains
FWE at a prespecified level α (Westfall et al., 2004) and enables
more efficient detection of differentially expressed genes than do
approaches based on conventional expression scores (e.g. MAS5). To
demonstrate the practical importance of this finding, we successfully
validated differential gene expression detected with the multivariate
procedure using real time quantitative PCR and data from spike-in
experiments.

METHODS

Multiplicity adjustment procedure
[Westfall–Kropf–Finos (WKF) procedure]
The proposed methodology is applicable to situations of two dependent
or independent samples as well as to one-sample situations (Läuter et al.,
1996). Please note that the case of two dependent samples can be treated
as a one-sample problem considering measurement differences within
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individuals. We will, therefore, demonstrate the methodology for a dependent
and for an independent sample data set (for details see below). However, in
this section we restrict ourselves to the case of two dependent samples for
reasons of brevity.

Let us consider n independent, identically normal distributed k-
dimensional sample vectors zj (with components zji, i = 1, . . . , k;

j = 1, . . . , n) with expectation µ =




µ1

...
µk


. Here, n represents the number

of individual specimens for which differences in the expression of k probe
sets (representing certain genes) between two types of tissue probes have
been analysed. To test the local hypotheses Hi : µi = 0 for i = 1, . . . , k (no
difference in gene expression for all genes), Westfall et al. (2004) introduced
the following procedure:

(1) Calculate the P -values Pi(i = 1, . . . , k) using unadjusted one-sample
t-tests for the zji. (j = 1, . . . , n; i = 1, . . . , k)

(2) For each variable (e.g. probe set), determine the sum of square values
wi = ∑n

j=1 z2
ji (i = 1, . . . , k) and the weights gi = w

η
i for a fixed

value η ≥ 0. Calculate the weighted P -values Qi = Pi/gi and sort
the variables according to Qi1 ≤ Qi2 ≤ · · · ≤ Qik , which gives the
following order: Q(1) ≤ Q(2) ≤ · · · ≤ Q(k). Define the index sets
Sj = {ij , ij+1, . . . , ik} (j = 1, . . . , k). The ordered hypotheses H(j)

(j = 1, 2, . . .) are rejected as long as Q(j) ≤ α∑
m∈Sj

gm
.

Stop at the first j yielding a value Q(j) which does not meet this inequality.
Westfall, Kropf and Finos (Westfall et al., 2004) showed that this procedure
maintains the FWE α if the zj follows a multivariate normal distribution. The
procedure is equivalent to the classical Bonferroni–Holm procedure for the
specific parameter choice η = 0. Also the other special case, η → ∞, has
already been discussed in detail (Kropf, 2000; Kropf and Läuter, 2002). In
the following paragraphs, this procedure is considered for arbitrary η ≥ 0
and is applied to multivariate PM-based scores which are left-spherically
(Läuter et al., 1998) rather than normally distributed. It can be shown that
this procedure (referred to as WKF procedure) maintains the FWE also in
this more general setting (Schuster et al., 2004).

Gene-expression scores
MAS 5 The algorithm calculates a weighted mean for the probe set using
signal intensities of PM and MM oligonucleotides in a one-step Tukey’s
biweight estimate. Signal intensity of a probe pair (PM and MM) is estim-
ated by taking the log of the PM intensity minus stray signal calculated
from mismatch intensities (Affymetrix technical note: ‘Statistical Algorithms
Reference Guide’, www.affymetrix.com).

MDP This procedure uses a robust version of a two-way analysis of
variance (considering chip and probe effects) to estimate the expression value
for each individual gene (Irizarry et al., 2003).

Multivariate scores Let us assume that the PM oligonucleotides follow
a multivariate normal distribution with expectations possibly different from
zero. k is the number of probe sets and pi the PM number of probe set i.
The total PM number is, therefore, given by p = ∑k

i=1 pi . The column
vector containing all pi PMs of probe set i and individual j is denoted by
xji. With xj we now denote the n independent, identically normal-distributed
p-dimensional sample vectors

xj =




xj1

...
xjk


 ∼ Np(µ, �) (j = 1, . . . , n),

with expectation µ =




µ1

...
µk


 and covariance matrix � =




�11 · · · �1k

...
. . .

...
�k1 · · · �kk


 .

xj is, therefore, a column vector representation of the individual row j of the
n × p dimensional data matrix X. The total product sum matrix is given by

W =




W11 · · · W1k

...
. . .

...
Wk1 · · · Wkk


 = X′X. And the local hypotheses are Hi : µi =

0 (i = 1, . . . , k) at a FWE level αFWE.
To create multivariate PM-based scores of the expression intensities we

form weighting vectors, which depend only on the total product sum matrix W
of the data. Within this dependency postulation, different choices of weighting
vectors are possible. Four options are described briefly below [for details see
(Läuter et al., 1996)].

The weighting vectors ci (i = 1, . . . , k) are obtained for the

(1) non-standardized principal component (NPC) test as the eigenvectors
ci (i = 1, . . . , k) of the largest eigenvalue of the eigenvalue problems
Wiici = λci with c′

ici = 1;

(2) standardized principal component (SPC) test as the eigenvectors ci

(i = 1, . . . , k) of the largest eigenvalue of the eigenvalue problems
Wiici = Diag(Wii)ci with c′

i Diag(Wii)ci = 1 (i = 1, . . . , k);

(3) covariance sum (CS) test as ci = [Diag(Wii)]−1Wii[Diag(Wii)]−1/21pi
;

(4) standardized sum (SS) test as ci = [Diag(Wii)]−1/21pi
.

Please note that all ci are dependent on Wii only.
To ensure that probe sets with balanced increased and decreased oligo-

nucleotide measurements xji are not counted as differentially expressed,
the following absolute and standardized weighting vectors (only depending
on Wii) are used:

dji = |cli|∑pi

l=1 |cli| , l = 1, . . . , pi , i = 1, . . . , k.

Now, the pi -dimensional data vectors of PMs for probe set i and individual j

are subsumed into the score: zji = d′
i xji, which is unequal to zero with

probability one.
It can be demonstrated that the scores zji are left-spherically distributed

whenever the original data are multivariate normal.
It can be proven (Schuster et al., 2004) that the WKF procedure for the

left-spherically distributed scores zji keeps a given FWE under the assump-
tion of multivariate normal distributed xji. It should be noted that this also
holds for the two-sample situation with weights determined by an appropriate
modification of the matrix W (Schuster et al., 2004).

SAMPLE DATASETS
Two sample datasets have been included in this study to test the
power of the different algorithms.

The first set (dependent samples) contains patient data from a
gene-expression project which characterizes molecular events in
thyroid tumour tissue (Eszlinger et al., 2004). Here, the descrip-
tion of differentially expressed genes will further our understanding
of the impaired thyroid epithelial cell signalling that eventually
leads to thyroid neoplasia and is, therefore, relevant to both dia-
gnosis and therapy of thyroid tumours. Gene-expression analysis
using Affymetrix GeneChips was performed on a set of 15 autonom-
ously functioning thyroid nodules (AFTNs) and matching normal
surrounding tissue taken during thyroid surgery. Experimental pro-
cedures for the set of 30 Affymetrix GeneChip experiments follow
the manufacturer’s instructions (Affymetrix, Santa Clara, CA, USA)
and have been recently described (Eszlinger et al., 2004). In addi-
tion to microarray experiments, aliquots of total RNA preparations
were also used to quantify selected genes in a real-time reverse tran-
scribed (RT)–PCR reaction using a LightCycler (Roche, Mannheim,
Germany) as previously described (Eszlinger et al., 2001, 2004).
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Table 1. Reevaluation of transcripts (defined by the Affymetrix probe set ID and the gene symbol) obtained as differentially expressed by the test procedures
MAS5, MDP or the variants of the WKF procedure, NPC and SPC [η = 1, as suggested by Schuster et al. (2004) for cases without preliminary information]

Probe set ID Gene symbol GeneChip analysis Real time PCR
SLR (MAS5) WKF statistics LR Statistics
Mean SEM MAS5 η = 1 MDP η = 1 NPC η = 1 SPC η = 1 mean SEM P -value unadjusted Bonferoni–Holm

31812_at GMPR 0.0 0.1 N N S N 0.0 0.4 0.9889 N
384_at PSMB10 0.1 0.1 N N S N −0.8 0.6 0.1961 N
37653_at COL18A1 0.1 0.2 N N S S 0.7 0.2 0.0061 S
38451_at UQCR 0.6 0.1 N S S S 0.6 0.2 0.0126 S
41206_r_at COX6A1 0.6 0.1 N S S S 0.7 0.3 0.0184 S
37033_s_at GPX1 0.7 0.1 N S S S 0.7 0.3 0.0215 S
37952_at ITGB3 0.7 0.1 N S S S 0.9 0.3 0.0042 S
37906_at LTBP2 −1.1 0.2 N S S S −1.0 0.3 0.0017 S
343_s_at ENPP1 −1.1 0.2 N S S S −1.9 0.3 0.0001 S
38059_g_at DPT −1.9 0.4 N S S S −2.4 0.5 0.0003 S
1736_at IGFBP6 −2.1 0.4 N S S S −1.6 0.2 0.00001 S
35649_at CDO1 −2.2 0.4 N S S S −2.3 0.3 0.000001 S
39757_at SDC2 −1.1 0.1 S S S S −1.2 0.2 0.0003 S
39066_at MFAP4 −2.4 0.3 S N S N −2.4 0.5 0.0008 S
36455_at COL9A3 3.4 0.5 S S S S 3.3 0.7 0.0003 S
38057_at DPT −1.9 0.3 S S S S −2.4 0.5 0.0003 S
33249_at NR3C2 −0.9 0.2 S N S N −0.8 0.2 0.0032 S
36167_at ATP6F 0.5 0.0 S S S S 0.4 0.2 0.0144 S
31966_at DIO1 2.0 0.2 S S S S 2.0 0.3 0.00001 S
36681_at APOD −3.5 0.3 S S S S −3.1 0.4 0.000002 S
35928_at TPO 1.7 0.2 S S S S 1.4 0.3 0.0007 S
926_at MT1G 1.3 0.2 S S S S 1.6 0.3 0.0001 S
578_at RAG2 1.6 0.3 S N N N 2.7 0.3 0.000001 S
672_at SERPINE1 1.5 0.2 S N N N 1.2 0.3 0.0005 S

Shown are data for GeneChip and real-time RT–PCR experiments for a selection (for details see ‘sample dataset’) of 24 differentially expressed probe sets (αFWE = 0.10) out of
the 12 625 probe sets in 30 specimens (tumours and matched normal tissues from 15 patients). Results of the GeneChip experiments are given as mean and SEM of the signal log
ratio (SLR) for the expression in tumour compared with normal tissue calculated with the Affymetrix MAS5 software. Similarly, for real time PCR the log2 of the ratio (LR) for
the gene expression in matched tissue pairs is given as mean and SEM. Statistical analysis was done according to Bonferroni–Holm (αFWE = 0.10; k = 24). N, not significant;
S, significant.

Briefly, 2 µg of total RNA was reverse transcribed using Super-
Script™ II Reverse Transcriptase (Invitrogen, Carlsbad, CA, USA)
primed with oligo-dT according to the manufacturer’s instructions.
Optimal PCR reactions for all investigated genes were established
using the LightCycler—DNA Master SYBR Green I Kit (Roche,
Mannheim, Germany) according to the manufacturer’s instructions:
annealing temperatures and MgCl2 concentrations were optimized
to create a one-peak-melting curve. Exact conditions and the nucle-
otide sequences of the PCR primers are available on request. PCR
fragments were cloned into the pGEM-T vector (Promega, Madison,
WI, USA). Dilutions of these plasmid preparations containing known
copy numbers were used as calibration curves for each template. In
addition, quantification of tumour and matched normal tissues from
15 patients were performed in the same run. To normalize for differ-
ences in the amount of cDNA added to the reactions, quantification
of GAPDH and β-actin was performed as an endogenous control.
The differential expression of the investigated genes was calculated
as the ratio tumour/surrounding tissue and expressed as log2.

From three pools, 24 probe sets for quantitative RT-PCR (Table 1)
were selected.

(1) Ten probe sets detected as differentially expressed with both
MAS5 and NPC procedures were randomly selected.

(2) Six probe sets detected only as differentially expressed with
the NPC algorithm were randomly selected. Additionally, we
picked the three samples with the highest/lowest score.

(3) From the sets detected only with MAS5, we picked the two
probe sets that were in this pool.

Second, we have compared the different approaches using a
latin square dataset (independent samples) of spike-in experi-
ments (Human Genome U133 dataset) that is available from Affy-
metrix (https:// www.affymetrix.com/support/technical/sample_data/
datasets.affx). The dataset consists of 42 GeneChip arrays based on
three technical replicates of 14 experimental settings (E1–E14). In
each setting 39 of 42 transcripts are spiked into a complex human
RNA background at concentrations ranging from 0.125 to 512 pM.
A different combination of 3 of the 42 transcripts is left out in each
setting. Except for transcripts that are left out, the concentration of
the spike doubles from one to the next setting. Therefore, when com-
paring, for example, the three replicates of E1 to the three replicates
of E2 we are able to validate the doubling of 36 transcripts (42 tran-
scripts minus the three left out in E1 and minus the three left out in
E2). As a result of this design, in each comparison of two experiments
(E1 and E2, E2 and E3, … , E14 and E1; altogether 14 comparisons)
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a true 2-fold difference was present for 36 transcripts, whereas 22 258
transcripts were unchanged.

PROGRAMMING
The statistical results were obtained using the statistical program-
ming environment R (Ihaka and Gentleman, 1996) including the
BioConductor Package (www.bioconductor.org). Our analysis is
based on AffyBatch objects obtained from the raw data (Affymet-
rix cel-file level) by application of quantile normalization without
background correction. For the sake of comparison of the proposed
multivariate approach with ‘classical’ methods we used summar-
ized expression scores per probe set calculated by the R-method
expresso with options mas5 (MAS5) and the combination median-
polish/pmonly (MDP). To approximately accommodate the criteria
of multivariate normality and variance homogeneity, all expression
values (individual PMs as well as expression scores) were expressed
as log2. The expression difference of a specific gene within individual
patients (trait versus surrounding tissue) is expected to be zero, if its
expression is not influenced by the trait. Therefore, the difference of
the logarithms is tested against zero. The significance level has been
set to αFWE = 0.10 in all procedures because of using FWE control
which is a rather conservative criterion. It should be emphasized,
that to strictly ensure the FWE criteria within the WKF procedure,
the choice of η has to be made beforehand. If there is no prior know-
ledge from comparable studies, we recommend to use η = 1 (see
also Schuster et al., 2004).

The proposed statistical procedures as well as the thyroid
tumour sample data are available within the data warehouse of
the Interdisciplinary Centre for Bioinformatics Leipzig (http://
www.izbi.de/GEWARE; see ‘Public user groups’; procedures per-
formed with ‘multivariate expression analysis’ under ‘expression
analysis’).

RESULTS AND CONCLUSION
In the analysis of a set of 30 Affymetrix GeneChip experiments
(Eszlinger et al., 2004) the WKF multiplicity adjustment proced-
ure (Methods section) returns the number of differentially expressed
genes determined as significant for a choice of different values of a
procedure specific parameter η (Fig. 1). To illustrate the advantages
of the proposed multivariate approach, the WKF multiplicity adjust-
ment procedure was applied to two cases which employ average
probe set expression scores [MAS5 and the BioConductor routine
medianpolish/pmonly (MDP) in Methods Section] and to four ver-
sions of true multivariate scores (NPC, SPC, CS and SS) as described
above. The results for the thyroid tumour dataset show that the
proposed total PM-based multivariate procedures as well as the
MDP procedure are consistently superior to the conventional MAS5
approach in the sense of finding more significant probe sets without
violating the FWE criteria for η ≤ 2.

Regarding the proposed total PM-based multivariate procedures,
this superiority is attributable to the incorporation of the total
multivariate information contained in the individual PM oligonuc-
leotides, i.e. our method is using individually (genewise) estimated
weights to calculate expression values by weighted averaging pro-
cedures of the individual oligonucleotide measurements. In contrast,
MAS5 is summarizing the oligonucleotide information of each probe
set into expression scores by means of one fixed averaging procedure.

Fig. 1. Results of the WKF procedure. The numbers of significantly (αFWE =
0.10; n = 12 625 probe sets) differentially expressed probe sets obtained
by the application of the WKF procedure depending on parameter η. The
different symbols correspond to the methods used. Herein, NPC test, CS test,
SPC test and SS test are different versions of multivariate test scores applied
within the new total PM-based procedure. Control results were obtained by
the application of the multiple WKF procedure to expression score based
t-tests constructed by the medianpolish/pmonly (MDP) and mas5 (MAS5)
options within the BioConductor-Routine expresso.

Furthermore, Figure 1 shows the WKF procedure to be better than
the widely used Bonferroni–Holm procedure (which coincides with
the WKF procedure using η = 0) for all choices of 0 < η < 2. Com-
paring the different versions of multivariate scores, shows the CS
test and the NPC test to be of similar quality, whereas the SPC test is
noticeably inferior. Among the two expression score-based proced-
ures the BioConductor routine MDP is superior to MAS5 at η < 3.
This indicates that the procedure which MAS5 uses to summarize
expression scores for the individual oligonucleotides of a probe set
(Tukey’s biweight) apparently leads to a loss of statistically useful
information.

To assess the consistency of the results between the different
approaches (individual oligo-based versus summarized expression
score-based), we consider here the NPC and the MAS5 procedures
at η = 1 (Table 1). The MAS5 procedure identified 56 probe sets
with significant differential expression, whereas the NPC procedure
identified 157, including 54 of the 56 detected by MAS5 and 103
detected uniquely by NPC. Only two probe sets were identified by
MAS5 and not by NPC.

To validate the statistical results by an additional experimental
approach, we tested subgroups of the respective genes or transcripts
with real time quantitative RT–PCR (Eszlinger et al., 2004). Strik-
ingly, within the group of differentially expressed genes detected
only by the NPC test, we were able to experimentally validate dif-
ferential expression of 10 of 12 transcripts (Table 1). Moreover, all
10 probe sets from the group of genes common to the NPC and
MAS5 procedure and the two probe sets that escape detection with
the NPC show differential expression in real time quantitative PCR
experiments.
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Table 2. Results of the WKF procedure applied to data from spike-in
experiments (for details see ‘sample dataset’)

Procedure Percentage detection of true
two fold different transcripts

Percentage detection of true
negatives

CS 45.2 0.13
NPC 40.7 0.18
MDP 34.7 0.04
MAS 6.7 0.02
SS 50.0 0.06
SPC 52.6 0.06

The results of the first column have been generated as follows: First, we calculated
the number of significantly (αFWE = 0.10; three versus three replicates) differentially
expressed transcripts, with respect to the 36 cases with a true 2-fold difference (spiked-
in transcripts that have a true 2-fold difference, 36 probe sets) for all 14 individual
experiments. Second, we derive the average of these numbers. Third, the average is
divided by 36 (number of transcripts with true 2-fold difference) and multiplied by 100.
This leads to the percentage, which is given in the first column of the table. Calculation
of the second column is similar. Only the 36 spiked-in transcripts are replaced by the
22 258 transcripts not different between the experiments.

We, therefore, conclude that the multivariate procedure is a more
powerful means of detecting differentially expressed genes from
microarray data than the standard MAS5 analysis.

This conclusion is also drawn when analysing data from spike-in
experiments (Table 2). The percentage of detecting a transcript with
a true 2-fold difference for all versions of multivariate procedures
ranges from 40.7 to 52.6%. This is at least six times higher compared
with MAS5 (6.7%). Moreover, in this dataset all different versions
of the multivariate procedure show a better performance than the
MDP algorithm, which detects a true 2-fold difference in ∼34.7% of
cases. We have to admit that the CS and the NPC procedure show a
slight increase in false positive detection compared with MDP. This,
however, might be of less practical importance, because the false
positive rates of all procedures are very small (0.02–0.18 %). These
false positives might also reflect cross-hybridization effects of the
spiked transcripts which can partially explain their observed levels.
When comparing the performance of the different versions of the
multivariate procedure in the analysis of the two datasets, it becomes
clear that it is currently not possible to specify an order of superiority
between them.

Concluding from these analyses, we are recommending to avoid
the use of the MAS5 procedure for identification of differentially
expressed genes and present more powerful alternative approaches.

ACKNOWLEDGEMENTS
The authors thank M. Cross (IZKF Leipzig) and J. Läuter (IZBI
Leipzig) for a critical reading of the manuscript and discussion of
the project. This work was supported by a grant from the Deutsche
Forschungsgemeinschaft (DFG/Pa423/10-1), the Interdisciplinary
Center for Clinical Research (IZKF) at the University of Leipzig
(project Z16-CHIP2) and the Deutsche Krebshilfe (project 106542).
Microarray analysis was done at the IZKF Leipzig core facility.
K.K. is supported by IZKF Leipzig, (project Z03).

Conflict of Interest: none declared.

REFERENCES
Eszlinger,M. et al. (2004) Gene expression analysis reveals evidence for inactivation

of the TGF-beta signaling cascade in autonomously functioning thyroid nodules.
Oncogene, 23, 795–804.

Eszlinger,M. et al. (2001) Complementary DNA expression array analysis suggests a
lower expression of signal transduction proteins and receptors in cold and hot thyroid
nodules. J. Clin. Endocrinol. Metab., 86, 4834–4842.

Gershon,D. (2002) Microarray technology: an array of opportunities. Nature, 416,
885–891.

Harrington,C.A. et al. (2000) Monitoring gene expression using DNA microarrays. Curr.
Opin. Microbiol., 3, 285–291.

Ihaka,R. and Gentleman,R. (1996) A language for data analysis and graphics. J. Comput.
Graph. Stat., 5, 299–314.

Irizarry,R.A. et al. (2003) Exploration, normalization, and summaries of high density
oligonucleotide array probe level data. Biostatistics, 4, 249–264.

Kropf,S. (2000) Hochdimensionale Multivariate Verfahren in der Medizinischen
Statistik, Shaker Verlag, Aachen.

Kropf,S. and Läuter,J. (2002) Multible tests for different sets of variables using a
data-driven ordering of hypotheses, with an application to gene expression data.
Biomet. J., 44, 789–800.

Läuter,J. et al. (1996) New multivariate tests for data with an inherent structure. Biomet.
J., 38, 5–23.

Läuter,J. et al. (1998) MultivariateTests Based on Left-Spherically Distributed Linear
Scores. Ann. Stat., 26, 1972–1988.

Li,C. and Wong,W.H. (2001) Model-based analysis of oligonucleotide arrays: expression
index computation and outlier detection. Proc. Natl Acad. Sci. USA, 98, 31–36.

Reiner,A. et al. (2003) Identifying differentially expressed genes using false discovery
rate controlling procedures. Bioinformatics, 19, 368–375.

Schuster,E. et al. (2004) Microarray based gene expression analysis using parametric
multivariate tests per gene—a generalized application of multiple procedures with
data-driven order of hypotheses. Biomet. J., 46, 687–696.

Storey,J.D. and Tibshirani,R. (2003) Statistical significance for genomewide studies.
Proc. Natl Acad. Sci. USA, 100, 9440–9445.

Westfall,P.H. et al. (2004) Weighted FWE-controlling methods in high-dimensional
situations. In Benjamini,Y., Bretz,F. and Sarkar,S.K. (eds), Recent Developments
in Multiple Comparison Procedures., IML Lecture Notes and Monograph series.
pp. 143–154.

Westfall,P.H. and Young,S.S. (1993) Resampling-Based Multiple Testing: Examples and
Methods for Multiple P-Value Adjustment. John Wiley & Sons, New York.

3534


