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Abstract

This paper elaborates on the idea of using partial Steiner systems as
two-stage screening schemes. Recently was showed that the expected
number E of tests per sample (a natural objective function in this

context) is almost minimal in a hypercube scheme with rk samples (for

suitable 2 and r dependent on the event probabilities p). Qur method

achieves the same E with much fewer samples in the scheme, which

makes it - unlike the hypercube method - useful in practice even for

small p. The needed screening schemes are given explicitly which make
} it easy to implement an optimal two-stage screening for known p.

i 1. Introduction

In searching for rare binary events (with probability p), for example
in blood testing or in polymerase chain reaction (PCR)-based methods,
testing each single sample may be ineffective, especially when given a
large number IV of samples. The simple idea of two-stage screening is to
test mixtures in the first stage and only a reduced number of samples in
the second stage. For this we assume that the samples are identically
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independently Bernoulli-distributed with event probability p, and that a
mixture of samples is positive if and only if at least one of the samples
contained in it is positive. Furthermore, we assume perfect specifity and
sensitivity of the analytical test used for samples and mixtures. OQur
objective is to minimize the expected number E of tests per sample
needed to identify all positive samples. In the last section we discuss the
consequences if the assumption of perfect sensitivity fails. In addition to
two-stage-screening, other methods using more than two stages have
been developed, however their complex organisation greatly reduces their
practical value (Phatarfod and Sudbury [14]).

The general screening procedure is the following: Each sample is
divided into k +1 parts. One part from every initial sample is reserved
for the second stage. The other k- N parts are used to form mixtures.
Each mixture contains r parts - of course from different initial samples.
At the first stage we test these mixtures. At the second stage only those
initial samples are retested which are contained in % positive mixtures.!
The simplest and oldest example that illustrates two-stage screening is
the Dorfman scheme. Dorfman {10] presented the idea of testing the
mixture of r samples. If such a mixture is positive, then we waste one
test, but if it is negative, then all samples contained must be negative,
and accordingly we save r — 1 tests. The expected number of tests needed

for one mixture in the Dorfman scheme D(r)is1+r(1-q") withq =1~ p,
The expected number of tests per sample needed is accordingly:

,
E=1+r(1—q)

S | _ A’
= =r " +1-4q’,

if the number of samples N divided by r is an integer. (Here k = 1)

Phatarfod and Sudbury [14] investigated a two-dimensional
generalization of this procedure. Now % = 2, and each sample is divided
into three parts. Mixtures are formed from parts of the samples contained
in one row or one column of a quadratic scheme. At the second stage one
has to test only the samples in two mixtures which have tested positive.

1 We do not consider the possibility of concluding after the first stage that a sample is

positive (details for this are in Berger and Levenshtein [5, 6]), because of possible
measurement errors.
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Here is an example of a 6 x 6 -array scheme: Enumerate the 36 samples
S;i@, j =1, ..., 6). The mixture L; contains one part of all the samples in

the i-th line. The mixture C; consists of parts of all the samples in the

Jj-th column.
Su Sz Si3 Sy S5 S | L
Se1 Sas  [Sasl S IS25!  Sz6 | Le
Ss1 Sz Sz Ssa S Ss | Ls
Si Siz [Sasl Su 1Sl Sus | La

If at the first stage the mixtures Ly, Ly, C3 and Cy are tested positive,
only Sy3, Sg5, S43 and Sy5 must be tested at the second stage.

Berger et al. [7] extended the investigation from square array
schemes to k-dimensional hypercube schemes for arbitrary % e N.
Instead of rows and columns, lines parallel to the edges of the hypercube
are used. Let each such line contain r elements. At the first stage we test
the mixtures corresponding to these lines. At the second stage, only
samples at the intersection of % positive lines are tested. Berger et al. [7]
were able to prove that hypercube schemes are nearly optimal with
respect to the expected number E of needed tests per sample, if size r and
dimension k are chosen to fit p. They obtain

E= §+p+(1—q’“1)kq‘

For Table 1 we calculate the optimal E, k and r depending on p with

Maple 6 (Monagan et al. [13]). It shows that the number r* of samples in
an optimal hypercube scheme increases very quickly with decreasing
event probability p. For applications it is important to reduce the number
of samples in the scheme while keeping E optimal.2 The key for this is our
generalization which treats hypercube schemes as special cases of the

2 Berger et al. [7] already notice this possibility and give two examples. They do not
investigate the subject systematically, in particular the reduced number of samples in the
given schemes is not minimal.
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schemes corresponding to partial Steiner systems of degree r (defined
later in Subsection 2.1). In all these schemes E is optimal and the new
task is to minimize the number of samples b in the scheme. We imagine a
situation in which the user collects new samples continually and can wait
until this b is reached.3

The second section will explain the link between screening schemes
and partial Steiner systems and present all definitions needed from
combinatorial design theory. In the third section the needed (partial)
Steiner systems are described explicitly which make it easy to implement
an optimal two-stage screening for known event probability p. The fourth
section deals with a further reduction of the number of samples in the
scheme by leaving out single blocks in the case k& = 2. In the last section
we discuss practical questions concerning the situation where the event
probability is not precisely known.

2. Modelling as a Combinatorial Design

2.1. The basic combinatorial concept: partial Steiner systems

Here we recall some simple statements about (partial) Steiner
systems.

Definition. A design is a pair (V, B), where V'is a set consisting of v
points and B is a collection of subsets of V called blocks. A design is called
a Steiner system S(2, k; v) if each block contains k points and each pair of
points is contained in exactly one of the blocks.4

In the following, if not specified otherwise, we normalize to V =
{1, ..., v}. For convenience of the reader we give the following well-known

Lemma with proof.

3 Berger and Levenshtein [6] also use partial Steiner systems for screening procedures, but
they do not try to minimize b. Instead they got asymptotic statements for large b (Berger
and Levenshtein[5, 6]; Levenshtein [12]).

4 The parameter 2 refers to the fact that each pair of points is contained in exactly one

block. An S(c, k; v) is a design where each block contains % points and each subset of V

with ¢ elements is contained in exactly one block (Beth et al. [8]). We do not need these
more general Steiner systems in this paper.
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Lemma. Each point w € V of a Steiner system is contained in exactly

. . v k
r= Z:i blocks. The number b of blocksin B is b = (2)/(2) .

Proof. Consider w € V. Then the number of pairs containing w is
v -1, one for each other element of V. Let r be the number of blocks
containing w. Each of these blocks has k -1 further elements and since
each pair appears only once, these are all different and w is contained in
(k - 1)r pairs. It follows (v —1) = r(k —1) and so r is independent of w

and as stated. The other assertion is obvious.

Definition. The design (V, B) is called a partial Steiner system if

each block contains k points and each pair of points is contained in at
most one of the blocks. We say that the pair (V, B) is a partial Steiner

system PS(2, &, r; v) of degrée r if in addition each point of V'is contained

¥

in exactly r blocks.5

Remark. In the last case the number of blocks b is b = % < =%

N’

= %‘;— and so r < Z:i and v > (& —1)r +1. Here, equality holds if

and only if the partial Steiner system is a Steiner system.

One possible method to represent a partial Steiner system is an
incidence matrix. The matrix has v rows corresponding to the points of V
and b columns corresponding to the blocks. We have a;; =1 if and only if

the i-th point is contained in the j-th block and a; = 0 otherwise. Of

course the. incidence matrix depends on the labelling, but it is unique up
to the permutation of rows or columns. (For an example see Figure 1.)
Another way to give a (partial) Steiner system is to describe the blocks by
their elements. So to describe the block corresponding to the third column

5 Partial Steiner systems of degree r are regular graph designs with A; = 0 and A = 1.
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of the S(2, 2; 7) in Figure 1 we write By = {1, 4}.

1111110 0 0 00 O O0OOOCUOOOUOTUOOUDO
10000 011111090 O0O0TO0OTGO0TUO0TGO0TO0TO
6010 00 0100001111000 0 00
0 010 0 0 01 0 0 01000111000
6 6 010 00 01 00 010 01 00110
0 0 0 010 0O0O0OI1 0O0O0OC1O0O0OT1TO0T1 01
0o 0 00 010 0 0010001 001 0 1 1

Figure 1. The incidence matrix for a Steiner system S(2, 2; 7): The

sum in each column is & = 2, the sum in each row is r = v-1 =6. In the

k-1
special case k = 2 it is enough to test whether the columns are different

to make sure that it is an incidence matrix of a partial Steiner system.

The connection to screening procedures: The motivation to use
(partial) Steiner systems for two-stage screening is the observation, that
Berger’s hypercube schemes of dimension k and length r correspond to

partial Steiner systems PS(2, k, r; v) of degree r with b = r® blocks. Let
S be the set of samples S; and M be the set of mixtures M;. Then

¢ Each mixture M; consists of r samples.
* Each sample S; occurs in exactly k£ mixtures.

¢ Two mixtures have at most one sample in common.

We define the corresponding partial Steiner system as following: Let
the pointset V = {1, ..., v} consist of one i for each mixture M;, and let
the blocks B; correspond to the samples S; in such a way, that a point
belongs to a block if and only if the sample is contained in the mixture:

ieB; & SjeM;.
The bijection M — V, then induces a bijection & — B and the above

mentioned properties of (M, S) correspond exactly to the definition of

the partial Steiner system (V, B) of degree r.
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Definition. Analogously, we can define a two-stage screening
corresponding to a partial Steiner system (V, B). If B = {B,, ..., By}, then

we work with b samples § = {Sj, ..., Sp} and define a mixture M; for each
i € V according to the rule: S; € M; < ¢ € B;. At the first stage we test

these mixtures. At the second stage we test the samples which are only in
positive tested mixtures. For a first example see Figure 2.

I 2349567890 1 1213 14 15 16 17 18 19 20 |21

111111 M,

1 111 1 1 M,

Figure 2. An example of the screening procedure for the Steiner
system S(2, 2; 7) in Figure 1. Let the samples be 1, ..., 21. Each column

of the matrix corresponds to a sample, each line to a mixture. The
mixture }; contains the samples j if and only if the entry a;; in the i-th

line and the j-th column is 1. For instance, Mg contains the samples 5,

10, 14, 17, 19 and 21.

If at the first stage the mixtures My, My, Mg and M; have tested

positive, then at the second stage, the samples 1, 5, 6, 10, 11 and 21 must
be tested, because they belong only to mixtures which have tested
positive.

Example. Choose the Steiner system S(2, 3; 27) fork = 3 and r = 13

in Subsection 3.3 below. The screening scheme works with 117 samples.
Enumerate them by S; ; with i =1, .., 9, j =0, ..., 12. At the first stage

we form 27 mixtures, say M(a,b)(a =0, ..,12,b=0,1) and M_, where

the mixture M, p) contains the samples S; ; for which ap € B; ;. For
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example, the mixture My, ¢) contains Sy g since By g = {1, 101, 12} + 8
= {91, 51, Tg} contains 7. (The operations are defined in Subsection 3.3,
we work modulo 13, 5018, = 5,.) M,, contains the samples S;, j for which

© € B; j, i.e., the samples Sy ; for i = 0, ..., 12.
We give exph'cﬁtly the mixtures M7 ) and Mg 1):
Mz,0) = {S1,8, S2,9: S3,10, S4,0- S5,3> Se,12> S7,6> S7,4,
S7,11, Sg,5, Sg,1, Sg,2, S, 7},
Mg,1) = {S1,5. S1,9, S2,4, So.12, S3.3, S3,2, Sq,0, Sa,11,
S5,10- S5,7, Se,1, Se,8, So,6}-

M@,0), M, and M) cannot be the only mixtures tested positive,

because there is no sample that is only contained in these three mixtures.
Each sample is contained in three mixtures and two mixtures have at
most one sample in common. Therefore, it is also impossible that precisely
four mixtures are tested positive. Now assume that exactly the mixtures
M7,0), M(s,1) and Mg 1) are tested positive at the first stage. At the

second stage all the samples that are only in mixtures which have tested
positive must be tested. So, in this case the only sample to be tested at the
second stage is Sy ¢.

Proposition.5 The expected number of tests per sample E for the
screening corresponding to a partial Steiner system PS(2, k, r; v) of degree

ris
k _
E="+p+1-¢ Vg (@=1-p)
Proof. As indicated in the introduction, we use the assumption that

the test has perfect specifity and sensitivity for the mixtures, in the sense
that all and only the positively tested mixtures contain at least one part,

that is positive. Since v = %k— , there are —I; tests per sample at the first

6 We-found this proposition and its proof independently from Berger and Levenshtein [6]. It
is a consequence of Theorem 2 there.
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stage. The probability P(T'g) that a sample S (corresbonding to the block
B) must be tested at the second stage (Tg) is '

P(Ts) = P(TS AS = +)+P(TS AS = —)

= P(T5|S = +)P(S = +)+(Ts|S = -)P(S = -)

=1-p+(1-q g

If the sample is positive, then it is clear (because of the perfect
sensitivity) that it is contained only in positively tested mixtures and
therefore must be tested at the second stage, so P(Tg|S = +) = 1. Ifitis

negative, then the conditional probability that a mixture M containing S
is negative is q” 1 since the remaining r — 1 samples of the mixture are
independent and each of them is negative with probability q. Therefore,
P(M = +|8S =-)=1-q""L. The k(r —1) samples that are mixed with S
in all £ mixtures My, ..., M} containing S are distinct. Otherwise there
would be samples S = S; and S; that are in mixtures M; and My,. In
the corresponding partial Steiner system, {/, m} would then be an element
of B; N B; which contradicts the definition of a partial Steiner system.
Therefore, the k events (M,, = +)(n =1, ..., k) are independent and

P(M1 =+A-AM, =+|S = _) = (1_qr—1)k.
Because of perfect specifity we get P(Tg|S =-)=(1- qr—l )k and E -
k - .
7+P+(1—qr 1yeq.

This formula for E isthe same as in the hypercube case. Therefore,
every partial Steiner system of degree r with k and r chosen with respect
to p gives a screening scheme which minimizes the expected number of
tests per sample E. The task is then to find such a partial Steiner system
of degree r with as few blocks as possible. The Remark in Subsection 2.1
shows that for given k& and r a Steiner system S(2, k; v) (f it exists)

minimizes the number v of points and therefore minimizes the number of
blocks b in the scheme among all partial Steiner systems PS(2, &, r; w)

of degree r.
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2.2. Further concepts from design theory

Here we present concepts and notations that we shall need in the
next section.
Definition. A parallel class Pin a design (V, B) is a subset of the set

of blocks B such that every element w € V occurs in exactly one of the
blocks of P.

If B is the disjoint union of parallel classes, then the design is called
resolvable. (For an example see Figure 3.) We write RS(2, k; v) or
RPS(2, k, r; v) for resolvable Steiner systems or resolvable partial Steiner
systems of degree r, respectively. (Of course, a partial Steiner system

which is not of degree r for any r € N cannot be resolvable.) A partial
resolution class PC is a subset of the blocks of B, so that no point v e V

occurs in more than one of the blocks of PC.

0 O 1 0 O 1 0 O 1
1 0 0 1 0 0 1 O 1
0 0 1 0 0 1 0 0 1 1
0 ¢ 0 0 1 0 1 0 0 1 0
0 1 1
0 1 0 0 1 0 0O 0 1 0
0 0 0 0 1
0 0 0 1
0 0 0 1 1 0 O 0 0 1

Figure 3. The incidence matrix of a resolvable Steiner system
RS(2, 3; 9). The first parallel class consists of the first three columns, the
second of the next three and so on. This Steiner system with b = 12 in
the case k = 3, r = 4 shows that the reduction of sarﬁples in the scheme
mentioned in Berger et al. [7] is not optimal; they give a scheme with
b = 16 instead of b = 64 in the hypercube scheme.
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Let B(k) be the set of all v for which a Steiner system S(2, k; v)
exists and RB(k) be the set of all v for which a resolvable Steiner system
RS(2, k; v) exists. An advantage of resolvable (partial) Steiner systems

(of degree r) in our context is that by cutting off a parallel class we obtain
a partial Steiner system of degree r — 1.

Vector spaces over finite fields give raise to canonical resolvable
Steiner systems. Let W be the standard n-dimensional vector space over
the field F, with g elements. The lines in W are the one-dimensional
affine subspaces, that mean a + U, where U is a linear one-dimensional
subspace of Wand a € W. Let L be the set of all lines in W. Then (W, L)
is a Steiner system, written as AG(n, q), which is resolvable, since the

blocks a + U for a fixed U form a parallel class (Beth et al. [8, p. 11]).

Definition. A design is called divisible if V can be partitioned into
point classes (also called groups) such that no block exists which contains
points in the same class. If additionally each pair of points from different
classes is together in exactly one block, one speaks of a group divisible
design. A group divisible design of block size k and group size g with v
points is notated GD[k, g; v].

3. Optimal Designs for Event Probability p from 0.12 to 0.01

From Table 1 we get the pairs (k, r), for which we need optimal

designs. According to the formula E = §+ p+(1 —qr_l)kq there are

optimal k£ and r for a given p. Each combination (k, r) is optimal for an
interval of p. The p in Table 1 is maximal among those for which (&, r) is

optimal,7 i.e., if the given probability is between two probabilities in the
table, we choose the line with the greater p.

There is one exception in the trivial case k = 1. Here we give two lines for r = 3 because

for the maximal p = 0.3 isclearly E » 1.
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The second part of the table is a summary of the results of this
section. It shows the minimal screening scheme with E optimal, the
number b of samples in this and for comparison the number of samples in
a hypercube scheme.

For example, let p = 0.06. Then 0.063 > p > 0.055 and we get & =3,
r = 12. The optimal design is the Steiner system S(2, 3; 25). For this we
need 100 samples whereas the hypercube scheme needs 1728.

Table 1. Optimal (k, r) for given p and optimal designs

for occurring pairs (&, r)

p E r E Design b rk
03000 1 3 0990 D(3) 3
01240 1 3 0.661 D(3) 3
0.1230 1 4 0.658 D(4) 4
0.1210 2 6 0.653 S@, 2;7) 21 36
0.1000 2 7 0.583 S(2, 2; 8) 28 49
00770 2 8 0.497 S, 2;9) 36 64
00630 3 12 0.438 S(2, 3; 25) 100 1728
0.0550 3 13 0.399 RS2, 3; 27) 117 2197
0.0480 3 14 0.363 RPS(2, 3, 14; 30) 140 2744
0.0430 3 15 0.336 S, 3; 31) 155 3375
00390 3 16 0.314 RS(2, 3; 33) 176 4096
0.0350 4 21 0.291 RS2, 4; 64) 336 1.94-10°
0.0320 4 22 0.272 RPS(2, 4, 22; 76) 418 2.34 -10°
0.0300 4 23 0.259 RPS(2, 4, 23; 76) 437 2.80 - 10°
0.0290 4 24 0.252 RPS(2, 4, 24; 76) 456 3.32-10°
00270 4 25 0.239 RS2, 4; 76) 475 3.91-10°
0.0260 4 26 0.233 RPS(2, 4,26;88) ~ 572 4.57-10°
0.0240 4 27 0.219 RPS(2, 4, 27; 88) 594 5.31-10°
0.0230 4 28 0.212 RPS(2, 4, 28; 88) 616 6.15-10%
00220 4 29 0205 RS(2, 4; 88) 638  7.07-10°
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0.0210
0.0200
0.0190

0.0182
0.0176
0.0170
0.0166
0.0160
0.0156
0.0152
0.0148
0.0144
0.0140
0.0136
0.0132
0.0130
0.0126
0.0122
0.0120
0.0118
0.0114
0.0112
_0.01 10
0.0108
0.0104
0.0102
0.0100

[ R, = = B =, B SRS S, | S SR B SR 2 B B o~ SR 4 S B B L B4 B LB - B =L B

30
31
32

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

0.198
0.191
0.184

0.178
0.173
0.168
0.165
0.160
0.157
0.154
‘0.151
0.148
0.144
0.141
0.138
0.136
0.133
0.130
0.128
0.126
0.123
0.121
0.119
0.118
0.114
0.112
0.111

RPS(2, 4, 30; 100)
RPS(2, 4, 31; 100)
RPS(2, 4, 32; 100)

RPS(2, 5, 40; 165)
RS(2, 5; 165)
RPS(2, 5, 42; 185)
RPS(2, 5, 43; 185)
RPS(2, 5, 44; 185)
RPS(2, 5, 45; 185)
RS(2, 5; 185)
RPS(2, 5, 47; 205)
RPS(2, 5, 48; 205)
RPS(2, 5, 49; 205)
RPS(2, 5, 50; 205)
RS(2, 5; 205)
PS(2, 5, 52; 225)
PS(2, 5, 53; 225)
PS(2, 5, 54; 225)
PS(2, 5, 55; 225)
S(2, 5; 225)
RPS(2, 5, 57; 245)
RPS(2, 5, 58; 245)
RPS(2, 5, 59; 245)
RPS(2, 5, 60; 245)
RS(2, 5; 245)
RPS(2, 5, 62; 265)
RPS(2, 5, 63; 265)

750

775
800

1320
1353
1554
1591
1628
1665
1702
1927
1968
2009
2050
2091
2340
2385
2430
2475
2520
2793
2842
2891
2940
2989
3286
3339

8.10

9.24 -
1.05 -

1.02
1.16
1.31
1.47
1.65
1.85
2.06
2.29
2.55
2.82
3.13

4.18
4.59
5.03
5.51
6.02
6.56

7.78

8.45 .
.108
.108

9.16
9.92
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.10°

10°
108

-108
-108
-108
-108
-108
108
-108
-108
-108
-108
-108
3.45 -
3.80 -
-108
-108
.108
-108
-108
-108
7.15 -
-108

108

108
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3.1. The case k =1

For p > 0.3 the optimal strategy is to test each sample by itself. For
0.124 < p < 0.3 the Dorfman scheme is optimal with r = 3, for 0.121 <
p < 0.124 the Dorfman scheme is optimal with r = 4.

3.2. The case k = 2

k = 2 is optimal for 0.1210 > p > 0.0630 and the occurring values
for r are 6, 7, 8. For our purpose it is sufficient to find a Steiner system
r+1
S(2, 2; v). Our formulas give v =7 +1 and b = % = ( 9 ] So we can
\

choose the Steiner system with r +1 points and all different pairs of
points as blocks.

3.3. The case & = 3

k = 3 1is optimal for 0.0630 > p > 0.0350 with corresponding 12 <
r < 16. For a partial Steiner system of degree r we have v > 2r +1 and

ur @r +r

b=3 3

. For r =0, 1(mod 3) design theory shows that there

are Steiner systems with v = 2r +1 and b = —%’L For r = 2 (mod 3) this is

not possible since

2 . . .
(_Lgﬁ is not an integer. But we can hope for partial

@r +2)r

Steiner systems of degree r with v =2r +2 and b = . Indeed,

design theory shows that such partial Steiner systems exist, which
obviously have minimal b.

For our purpose we explicitly need the (partial) Steiner systems for
r =12, .., 16. So in the following we give such designs.

r = 12 We give an S(2, 3; 25), referring to Beth et al. [8, p. 483]. The
construction goes back to Hwang and Lin [11]. Let V = Zg5 (the residue
classes mod 25). For ¢ = 0, ..., 24 set:

B; ={0,7,9}+i, By ={0,11,12} +1,

B3i = {0, 6, 10} + i, B4i = {0, 5, 8} + 1.
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r = 13 We give an 5(2, 3; 27), referring to Beth et al. [8, p. 528].

The construction goes back to Ray-Chaudhuri and Wilson [15]. Let
V = (Z;3 x{0,1})U o and define for the rest of the paper the notations

(a,b)=ap,ap+i:=(a+i),ap i:=(a-i), and o +i:= o, For i = 0, ..., 12

set:

By = {1,,10,, 120} +i, By = {2, 7y, 11g}+i, By = {31, 45, 100} + 1,
By =1{61, 81, To} +i, By ={91,12), 49} +i, Bg; = {51,114, 89} +1,
By = {lo. 30, 90} +i,  Bg; = {20, 60, 59} +i, Bg; = {0, 0g, 01} + .

For fixed i these blocks form a parallel class, so the Steiner system is
resolvable.

r =14 We use the 14 parallel classes of a nearly Kirkman triple
system (Baker and Wilson [3]). The pointset is V = (Z7 x {1, 2, 3, 4})

U {eo1, wg}. Foreach i = 0, ..., 6 one obtains a parallel class consisting of
the ten blocks:

By; = {41, 52, 03} +i, By = {61, 35, 43} +i, By = {l;, 69, 54} +1,
By = {51, 15, 64} +i, By = {2, 63, 04} +i, Bg = {01, 13, 34} +1,
By = {81, 53, 24} +i, Bg; ={0g, 33, 13} +i, By = {29, 23, 1} +1,
Byg; = {42, 44, w0} +1.

In the same way one obtains for each i =0, .., 6 a parallel class

consisting of the ten blocks:
Cii = {01, 25, 63} +i,  Cy = {61, 59, 14} +i, Cy; = {0g, 53, 44} +31,
Cyi ={12,03,84}+i, Cs = {11, 21, 4} +i, Cg = {35, 43, 62} +1,
Cr ={13, 23, 43} +i,  Cg; = {64, 04, 24} +i, Co; = {51, 54, 01} +1,
Cro; = {31, 33, g} +1.

r = 15 In this case exist many S(2, 3; 31). We give a construction of

Colbourn and Mathon [9], referring to Beth et al. [8, p. 478]: Let V = Z3;,
fori=0,..,30 and j =0, .., 4 set By ={0,1, 6}-107 +i.
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r =16 We use a construction of Skolem [17] for an S(2, 3; 33),

referring to Beth et al. [8, p. 481]. Let V = Z;; xZ3. For i = 0, ..., 10
and j =0, ..., 2 set:

By; = {09, 0y, 02} +1, By = 004> 204j> L14j} + 13-
Baij = {00.j» 40+j» 21453 + 14, Bgjj = {0g.js 60+j> 314j} +1,
Byi; = {00+j> Bo+js 4145} +1, Bsij = {004, 1004, 51.j} + i.

3.4. The case k = 4

Here we have to construct designs for r = 21, ..., 32 corresponding to
p between 0.035 and 0.019. It is B(4) = 12N + {1, 4} and RB(4) = 12N + 4,
see Beth et al. [8, pp. 637 and 649]. The conditions for partial Steiner

systems of degree r take the forms: v2>3r +1 and b = % > @_r_zli

As above, the first question is, whether a Steiner system with the
lower bound of points and blocks exists. If r = 2 (mod 4), then it follows

3r +1 = 7(mod 12), if r = 3 (mod 4), then it follows 3r + 1 = 10 (mod 12),
ie., there exists no S(2, 4; v) with v = 3r +1. If r = 0(mod 4), then it
follows 3r +1 = 1 (mod 12), i.e., there exists an S(2, 4; v) with v = 8r + 1.
If r =1(mod 4), then it follows 3r +1 = 4(mod 12), i.e., there exists a
resolvable Steiner system RS(2, 4; v) with v = 3r + 1.

As mentioned above, from the resolvable Steiner system RS(2, 4;
3r +1) in the case r = 1(mod 4) we can easily construct partial Steiner
systems of degrees r — 1, ..., r -~ 3 by cutting off parallel classes. For r -1

it would even be possible to construct a Steiner system, but the

disadvantage of our choice in using the partial Steiner system (&;Q

samples more in the scheme are required) is not so important compared
with the advantage of implementing only one design. For r — 2 and r -3
there is no easy prospect for another construction. So from now on we are
concerned only with the case r = 1 (mod 4).
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r =21 We givé an RS(2, 4; 64), referring to Beth et al. [8, p. 26],
pamely the affine block design AG(3, 4) with v = 43 points and b = 336
blocks. The underlying field is the finite field Fy = Fy[x]/ (x? - x - 1). We

define a bijective map F; — {0, 1, 2, 3} by ag +a;x = ag +2a;. The

addition and multiplication tables are shown in Figure 4. Any of the 21
lines through 0 induces a parallel class of 16 blocks. That means for each
m a parallel class consists of the 16 blocks we get from B, (m =1, ..., 21)

by all combinations of i = 0, ..., 3 and j = 0, ..., 3
B; = {(0, 0, 0), (0, 0,1), (0, 0, 2), (0, 0, 3)} + G, J, 0),
By = {(0, 0, 0), (0,1, 0), (0, 2,0), (0, 3, 0)} + G, 0, j),
Bs ={(0, 0, 0), (1, 0, 0), (2, 0,0), (3, 0, 0)} + (0, 5, j),
B, ={(0,0,0),(0,1,1), (0,2 2). 0,3, 3)}+ j, 0),
Bs = {(0,0,0), (0,2,1), (0, 3,2), (0,1, 3} +(, j, 0),
Bg = {0, 0, 0), (0, 3, 1), (0, 1, 2), (0, 2, 3)} + (i, j, 0),
B; ={(0,0,0),(0,1),(20,2),(30,3)}+( Jj, 0),
Bg ={(0,0,0),(2,0,1),(3,0,2), @1 0,3} +( j, 0),
By = {(0, 0, 0), (3,0,1), 1, 0, 2), (2, 0, 3)} + (, j, 0),
By = {(0,0,0), (1,1,0),(220), (33 0}+(0, )
By = {(0,0,0), (2 1,0), (3,2 0), 13, 0}+G 0, )
By = {(0,0,0), (3,1,0), (1, 2 0), (23, 0}+G, 0, ),
B3 = {(0,0,0), (1,1,1), (22 2), (33 3)}+( Jj, 0),
By ={(0,0,0), (1,1, 2),(223),6 31} +C Jj,0),
Bis = {(0,0,0), (1,1, 3), (2,2, 1)3, 3,2} + G, J, 0),
Bjg = {0, 0,0), (1, 2,1), (23 2), (313} +( Jj, 0),

By ={(0,0,0),(1,31),(21,2),3 23}+( j,0),
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Big ={(0,0,0),(2,1,1),(3,22),Q, 3, 3)}+(, j, 0),
Big = {0, 0,0),(3,1,1), (1, 2, 2), (2,3, 3)} + (i, j, 0),
Bgy ={(0,0,0),(1,2,38),(23,1),6,12)}+( J, 0),

By; ={(0,0,0), (1, 3,2),(2,1,3), 3, 2, 1)} + @, j, 0).

+10 1 2 3 *10 1 2 3
0|0 1 2 3 0|0 O O O
1]1 0 3 2 1(0 ‘ 1 2 3
212 3 0 1 2{0 2 3 1
313 2 1 0 3o 3 1 2

Figure 4. Operation tables for the case r = 21.

r =25 In this case and the case r = 29 we use a construction,
referring to Beth et al. [8, p. 504], which gives a resolvable RS(2, 4; 3r +1)

if r = 1(mod 4) is a prime power.
At first we deal with the case r = 25. Let V = (Fp5 x Z3) U «. Identify

Fys = Fy[x]/(x? - 3) with {0, ..., 24} via the bijective map ag + a;x
ag + 5a; and write the normal symbols for the induced operations +, - on
{0, ..., 24}. Foreach m = 0, ..., 24 the following 19 blocks yield a parallel
class:Fori=0,..,5 j=0,1, 2 set:

Bo = {00, 00, 01, 02}+m,
By = {(6');, (-6');, 8-6')j,1, (-3-6'); 4} +m.

r =29 Weset V = (Zgg9 x Z3) U . Foreach m =0, ..., 28 a parallel
class of the constructed RS(2, 4; 88) is formed by the following 22 blocks:
Fori=0,..,6 and j =0, 1, 2 set:

BO = {oo, 00, 01, 02} +m,

By = {2, (-2);, 12+ 2');,,, (12 2,4} + m.
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r =33 We use a construction of Beth et al. [8, p. 529] to get a
resolvable RS(2, 4;100). Let V = Fp5x {1, 2, 3, 4}. Identify the set

{0, ..., 24} with Fy5 as above. For each m = 0, ..., 24 a parallel class is
formed by the following 25 blocks:

Bo = {01, 02, 03, 04}+m, Bx = {xl, 2 + X9, 3-x3, 4 ~x4}+m,
Bil = {l -3i, i-4i, i '8i! i-l5i}+m, BiZ ={i-2i,i'lli,i-17i,i-19i}+m
(=1,2384x¢ef,.,24} -2 3, 4,811, 15, 17, 19)).

For each x e {2, 3, 4, 8,11, 15, 17, 19} the 25 blocks B, (for m =

0, ..., 24) form one of the remaining eight parallel classes.
3.5. The case k =5

In this case we are searching for designs with r = 40, ..., 63. The
corresponding probabilities are 0.010 < p < 0.018. It is known that B(5) =
20N + {1, 5} and that for v € RB(5) it is necessary that v = 5 (mod 20).

Our formulas give: v > 4r +1 and b = 951 p-] _(ﬂ_;i)r_

in the Steiner system case. Only in the case r = 1(mod 5) is v = 5 (mod 20)

with equality only

and we can hope to find a resolvable Steiner system.

Because we have to cover 24 values of r we proceed as in the previous
paragraph: We use Steiner systems with r = 1(mod5) and at least 4

parallel classes to give partial Steiner systems of degree r, .., r —4 by

cutting parallel classes.

r = 41 Abel et al. [1] gave a resolvable Steiner system RS(2, 5; 165):
Let V =(Zy xZy x Zy1)Uw. For each m =0, ..., 40 the following 33
blocks form a parallel class (i, j € {0, 1}):

By = {», (0,0,0),(0,1,0), (1, 0, 0), (1, 1, 0)} + (0, 0, m),
Byj; = {(0, 0, 1), (0, 0, 40), (0, 0, 7), (0, 1, 15), (1, O, 6)} + (i, j, m),
By = {(0, 0, 2), (0, 1,17), (0, 1, 36), (1, 0, 5), (1, 0, 20)} + (i, j, m),

Bsy; = {(0, 0, 10), (0, 0, 31), (0, 0, 84), (1, 0, 21), (1, 1, 38)} + (i, j, m),
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By; = {(0,0,24), (1, 0, 3), (1, 0, 89), (1, 1, 26), (1, 1, 35)} + (&, j, m),
Bs;i = {(0, 0, 9), (0, 0, 32), (0, 0, 22), (0, 1, 12), (1, 0, 13)} + (i, j, m),
Bg; = {(0, 0,18), (0, 1, 30), (0, 1, 37), (1, 0, 4), (1, 0, 16)} + (i, j, m),
By; ={(0, 0, 8), (0, 0,33), (0, 0,19), (1, 0, 25), (L, 1, 14)} + G, j, m),
Bg; = {0, 0,11), (1, 0, 27), (1, 0, 23), (1, 1, 29), (1, 1, 28)} + G, J, m).

r = 46 We give an RS(2, 5; 185) referring to Abel et al. {2]. Let
V = (Z3 U {w;, 9})x Z37 and o; +i = ;. For each m the following 37
blocks form a parallel class (t = 0, ..., 2):

By = {(0, 0), 1, 0), (2, 0), (01, 0), (e0z, O)} + (0, m),

By; = {(0, 1), (0, 2), (0, 17), (1, 34), (eog, 18)} - (1, 10°) + (i, m),

By; = {(0, 4), (0, 27), (0, 29), (2, 28), (01, 12)} - (1, 10°) + (i, m),

Ba; = {(0, 7), (0,13), (1, 4), (1, 28), (0, 11)} - (1, 10°) + (i, m),

By = {(0, 23), (0, 34), (1, 6), (1, 21), (w5, 10)} - (1, 10%) + G, m),

Bs; = {(0,19), (1, 24), (1, 30), (2, 22), (w09, 11)} - {1, 10°) + G, m),
Bg; = {(0, 6), (0, 9), (0, 16), (1, 32), (=02, 18)}'7(.(1, 10%) + G, m),

By; = {(0,10), (0, 14), (1, 13), (1, 18), (g, 25)} - (1, 10°) + (i, m),
Bg; = {(0, 11), (0, 20), (01, 6), («0g, 2), (5, _19)}? @, 10°) + @, m),
By; = {(0,12), (b, 36), (01, 18), (=03, 16), (c0g, 34)} - (1, 10°) + (i, m),
Big; = {(0, 22}, (1, 14), (01, 2), (g, 3), (@3, 10)} - (1, 10°) + G, m),
By = {(0, 15), (oy, 4), (g, 8)s (05, 29), (0g, 35)} - (1, 10°) + (i, m),

B12i = {(O: 26)’ (001’ 7)1 (001’ 17): (001, 25)’ (001’ 29)} . (1’ 10‘) + (”1 m)
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The remaining 9 parallel classes arise from the following blocks, one
for each C]-i (6=0,1,2 j=1,2 3). They consist of the 37 blocks one
obtains for the different values of m (m = 0, ..., 36):

Cy; = {0, 1), (1, 3), (2, 12), (=01, 32), (w3, 22)} - (L, 10°) + (i, m),
Cy; = {(0, 4), (1, 22), (2, 36), (o1, 33), (0g, 35)} - (1, 10°) + (i, m),
CSi = {(O! 5)’ (1’ 1l)v (2» 2)' (001, 21)’ (°°2’ 8)} ' (1’ 101) + (”r m)

r = 51 Here v = 205 and the construction is parallel to the one used
inthecase r =33. Let V = Z; x{1,2,8,4,5}. Foreachm =0, .., 40 a
parallel class is formed by the following 41 blocks:

By = {01, 03, 03, 04, 05} + m,
By ={x1,2-x9,3-x3,4-%4,5 x5} +m,
B; = {i -5;,1-12;,¢-15;,¢-16;, 1 - 28i} +m,
Big ={i-4;,i-9;,i-18;,i-24;,i-26;} +m
(=123 45 x e, ., 0)\{4,5 9, 12, 15, 16, 18, 24, 26, 28}).

For each x € {4, 5, 9, 12, 15, 16, 18, 24, 26, 28} the 41 blocks B, (for m =

0, ..., 40) form one of the remaining ten parallel classes.

r =56 It is not known whether a resolvable Steiner system
RS(2,5;225) exists. We describe the construction of a Steiner system

S(2, 5; 225) (Beth et al. [8, pp. 503 and 623]) with at least six parallel
classes which fits perfectly with our purpose. We proceed in several steps:

1. We start with a GD[5, 5; 45] and get an S(2, 5; 45) by attaching
a parallel class which contains nine blocks, each containing the five
elements of one of the groups. Let M be the 45 x 99 -incidence matrix of
this S(2, 5; 45) and P be the 45 x9-submatrix corresponding to the

attached parallel class.

2. We start with RS(2, 5; 25) = AG(2, 5) and get a GD[5, 5; 25] by
cutting of a parallel class and define the groups according to the blocks
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we have cut. We choose to label V such that the first five points of V form
a group, and then the next five and so on. Then we choose to label B so
that the first five blocks form a parallel class, the next five as well and so
on. Let M; be the 5 x 25 -submatrix consisting of the rows 5( -1) +1, ...,

5 (i =1, ..., 5), i.e., the submatrix corresponding to the i-th group.

3. Now we combine the incidence matrices of these designs. In each
column of the incidence matrix M of the S(2, 5; 45) we replace the first
by M;, the second by My, ..., and the last by Mj. The zeroes we replace

by 5x 25 -zero matrices. This means from each column we obtain a
225 x 25 -matrix. The resulting 225 x 2475 -matrix is the incidence
matrix of a GD[5, 5, 225].

4. We construct an S(2, 5; 225) out of this GD[5, 5; 225] by attaching

a parallel class, which consists of 45 blocks, each containing the five

elements of one of the groups.

5. Finally we have to identify five further parallel classes. For the first

class we take for each column of P (see step 1) the first five columns of the

225 x 25 -matrix replacing it as in step 3, obtaining 45 blocks forming

a parallel class. In general, for the i-th parallel class for each column
of P we take the 5( —1) +1-th to 5i-th columns of the 225 x 25 -matrix

replacing it as in step 8 (¢ = 1, ..., 5). For the realization of this procedure

one surely needs a computer:

r = 61 There is an RS(2, 5; 245) as shown in Abel et al. [1]. Let
V =(Zy x Zg x Zg1)U . The Steiner system consists of 61 parallel classes,
one for each value of m = 0, ..., 60. The 25 blocks of such a parallel class

are ( =0,1,7=0,1,¢t=0,.. 5):
Ay =1{(0,0,1), (0, 0, 60), 0,0, 6), 0, 1,55), (1, 0,18)} - (1, 1, 2%) + G, j, m),
By = {(0,0,7), (0,1, 33), (0, 1, 54), (1, 0, 43), 1, 0, 28)} - (1, 1, 2%) + G, j, m),

C = {x, (0, 0, 0), (0,1, 0), (1, 0, 0), (1, 1, O)} + (0, 0, m).
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r = 66 It is possible to construct an RS(2, 5; 265) using an existing
S(2; 6; 66) (see Beth et al. [8, pp. 49 and 524]). The construction is too

complicated to be given here and requires a computer for implementation.
It is much simpler to use the following RS(2, 5; 285) for the values r =

71, ..., 62 by cutting off one to nine parallel classes.

r =71 we give this RS(2, 5; 285) referring to Abel et al. [1],
constructed as in the case r = 61 above. Let V = (Zg x Zy x Z7;) U .

The Steiner system consists of 71 parallel classes, one for each value of
m =0, ..., 70. The 57 blocks of such a parallel classare t = 0,1, j = 0, 1,

t=0,..6):
Ay, = {0,0,1), (0, 0, 70), (0, 0, 11), (0, 1, 60), (1, 0, 9)} - (1, 1, 7%) + G, j, m),

By, = {(0, 0, 36), (0, 1, 29), (0, 1, 35), (1, 0, 62), (1, 0, 42)} - (1, 1, 7%) + i, j, m),

C={o(000),(0,10),(100)(@10)}+(0,0,m).
4. Finer Considerations in the Case & = 2

For a given probability p let Dy be an optimal design in a specified
class. By reducing p we come to a point at which I} is no longer optimal
but the design D, is optimal. We say that these designs are neighboured.
In the hypercube case (see Table 1) there are two effects: if 2 remains
constant, then r grows by one, but if & grows by one, then r may jump.

Schuster [16] shows that there are optimal hypercuboids between
optimal hypercubes. More precisely, if the hypercube r* s optimal for the
probability py and the hypercube (r + l)k is optimal for p, < pg, then
there exists a chain of probabilities p, < pp_; < - < p < py such that

'p; is optimal for the hypercuboid (r + l)irk_i. So we can improve the

transitions by considering the greater class of hypercuboids.

In this section we are concerned with transitions from partial Steiner
systems PS(2, k, r; v) of degree r to the more general partial Steiner
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systems with the same k. We proceed by cutting off single blocks of a

parallel class or a partial resolution class. In this way, the number of
elements of V contained in r blocks is reduced step-by-step while the
number of elements contained in r — 1 blocks grows.

We treat the case k = 2, i.e., the starting point is an S(2, 2; v), with

b= Lv2—_9 blocks. Clearly in this case a (partial) resolution class exists

and we can (;‘ut of 0<e< % blocks. Let b* = b —c be the modified number
of blocks.
Proposition 4.1. If we cut off ¢ blocks of an S(2, 2; v), then E of the

corresponding screening scheme is

E(S(2, 2, v), ¢) = % +p+ :T[(U - 20)(02— 2¢-1) @- g™y

+2ev-20)1-¢"H(A-q"2)+2(c-1)(1- q’f2)2].

Proof. At the first stage we have % tests per sample. We use the
r

formula from the proof of the Proposition in Subsection 2.1, but
P(Tg|S = -) now depends on ¢ and we have different types of blocks:

There remain v - 2¢ mixtures of r samples. They correspond to

(v-2) (l;_ 2c - 1) blocks and for each of these P(Tg|S =-)=(Q - a1
Furthermore, there are 2c(v — 2c) blocks with one mixture consisting of r
gamples and one consisting of r -1 samples, ie., for these blocks
P(Tg|S=-)=(@1-q" “1)(1 - ¢""2). Finally we have E(CT—Q combinations
of cut off blocks with altogether 2c(c — 1) blocks for which P(Ts|S = -) =
(1 -q" 2. If we add P(Tg|S =-) for all blocks and divide by the

number b* of blocks, then we get the expected probability for an
arbitrary block and the desired formula. Table 2 gives optimal partial
_ Steiner systems for the probabilities 0.121 > p > 0.67 with k =2, ie,
the number of blocks to cut. For p < 0.07 is k2>3. In this cases
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analogous calculations are only possible for ¢ =1 and ¢ = 2 whereas for
¢ > 3 the required probabilities could depend on the special design and
the chosen blocks to cut.

Table 2. Optimal number c of blocks to cut for given p in the case
k=2 ie., 0.121 2 p 2 0.070

p r b c b* E* E
0.121 6 21 0 21 0.653 0.653
0.107 7 28 3 25 0.607 0.610
0.103 7 28 2 26 0.593 0.595
0.099 7 28 1 27 0.579 0.5795
0.096 7 28 0 28 0.568 0.568
0.081 8 36 4 32 0.512 0.514
0.079 8 36 3 33 0.504 0.’506
0.077 8 36 2 34 0.497 0.497
0.075 8 36 1 35 0.488 0.489
0.073 8 36 0 36 0.480 0.480

Note. b is the number of samples in the S(2, 2; r +1) -scheﬁle, b* is
the number of samples in the finer scheme, E is the expected number of
tests per sample in the S(2, 2; r +1) and E* is the expected number of

tests per sample in the final screening scheme. (For p between two
entries in the table chooses the upper line.)

5. Discussion of Practical Issues

In Table 1 we suggest designs for pairs (%, r). The only consequence
of choosing a pair (%, r) which is not optimal, is a higher value for E. So it

is even possible to choose a more simple design if this higher E is
acceptable.
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5.1. We only know ¢; < p <cy
For fixed £ and r and 0 < p <1 the function E(p) is increasing. To

show this, we differentiate E = % +p+(Q1- g™t )kqi

G =10 C=py ™ Q- PR~ (- P - D - B 2D

=1-(--p) ™R -Q-py T —kr-1)1 - p) ]
=1--0-py ) - - o)+ kG -1)] 2 0,

since 0 < (1-(-p)" 1)* <1 and [1- (1 - Y11 + K(r - 1))] < 1.

We suggest a minimax-strategy: Choose an optimal strategy for

p = ¢g. The true E* is at most E(cy).

Another possibility works with the assumption that p is uniformly
distributed in the interval i = {p|c; < p < cp}. Let Dy, ..., D; be all the

designs that are optimal at one point in the interval. Now we look at n
equidistant points in the interval and calculate the average E for every
D;. We choose the design with the minimal average E. This procedure is
a simplified numerical integration and requires elaborate calculation
whereas the minimax-suggestion can be read off from Table 1.

5.2. Mixing influences specifity or sensitivity of the test

We concentrate on the influence of the screening procedure so we still
assume perfect specifity and sensitivity for the test of a single sample. In
our model the problem of mixing is a possible low concentration, not a
possible interaction between the samples. Therefore, false positive testing
of a mixture is unlikely. We do not discuss this here, but notice that it
would lead to unnecessary tests at the second stage, i.e., a greater E.

We now discuss the case of imperfect sensitivity. Let M. ; be a mixture
and s; be the part of the sample S ; contained in M;. We describe the

problem of mixing in terms of s;j, le., we assume that a case of false

e,
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negative testing can be identified as a problem of the type (S; = +) A
(s;ij = -)- Then the mixture is positive if at least one of its parts s;; is
positive: P(M; = +)= P(U; (s;j = +)). We assume the following conditional
probabilities:

P(s;j =~|Sj =-) =1, P(sj =+|S; =-) =0,
P(s;j = +|Sj =+)=s, P(s;j =-|Sj =+)=1-s=t.

We assume that the errors (S; = +) A (s; = -) are independent, so we

can calculate the probability that the mixture M; is tested positive:
P(M; =+)=PU;j (s =+) =1-P(; (s5 = =) =1-1TI; P(sy; = -)

=1-Hj[P(Sij =—-[Sj =-)P(S] =-)+P(Sij =—lSj =+)P(SJ =+)]

=1-T;(L-q+t-p)=1-(g+tp).

For fixed j we get P(M; = +|Sj =+)=1-(1-0+t-1)(q +t-py =
1-t{g+tp) ™" and P(M; =+|S;=-)=1-(-1+t-0)(g+t-p) " =
1-(g +tp)r_1. In the special case ¢t =0 we obtain the formulas of
Section 2.

Now fix S; and look at all M; that contain parts of S;. Since the M;

are independent, we can calculate the probabilities that all the mixtures

test positive:
P (M; = +|S; = +)) = (1 - t(g +tp) ),

P(;(M; = +1S; =) = @ - (g +wp) ).

Now it is easy to calculate the probability that at least one of the mixtures

containing parts of S; has tested false negative:

P(U; (M; = —|S; = +) = 1= PO, (M; = +]S; =+) =1-(-t(g + o) ).
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For small ¢ the first approximation (2 =0) of this is k¢, ie., the
probability that a positive sample is not identified, increases linearly
with &.

So if the probability ¢ for a false negative testing of a mixture with r
components is known, the probability of a false negative tested sample
can be calculated. If a maximal acceptable probability for a false negative

tested sample and #(r) for the respective r has been given, a screening
scheme with™% and r small enough according to this condition and the
above formula can be chosen.

5.3. Decisions for bounded r and b

If it is possible to mix only ry samples and the optimal scheme for the
given probability p works with r > ry, it is optimal to choose a screening
scheme with the maximal r < ry occurring in Table 1. If it is not possible

to collect the samples for the optimal screening design according to the
known probability p, but only by samples are to be tested, choose in Table

1 the design with the maximal b < by. If the number of samples that can

be mixed without false negative testing is not known use other methods,
e.g., Balding and Tourney [4].
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