
Introduction
The three-dimensional (3D) characteriza-
tion of invasion patterns of squamous cell
carcinoma of the uterine cervix is a current
clinical question and is a matter of investi-
gations with respect to prognosis [1]. Avail-
able 3D microscopic techniques for in-vivo
or ex-vivo analyses include miniaturized
computed tomography (µCT), miniaturized
nuclear magnetic resonance imaging
(µMRI), or confocal laser scanning micros-
copy (CLSM), etc. However, for reasonable
specimen sizes (100 mm³ or more), and for a
required degree of detail (about 10 µm)
either the applicable penetration range, the
usable contrast or the spatial resolution ex-
hibit substantial limitations. The modality
we alternatively have decided to use is con-
ventional bright-field transmitted light
microscopy as it is basically applied in clini-
cal routine, but have virtually extended it to
3D using large histological serial sections
with up to several hundreds of slices. This in
turn gives demand for high-level digital
image processing as, for example, Ourselin
et al. have introduced in their (rigid) ap-
proach intending to reconstruct brains of
rats and rhesus monkeys [2]. Related
methodologies for similar applications
using reference-free registration ap-
proaches for 3D reconstruction of tissues
were published by Bardinet et al. [3], Leh-
mann et al. [4], Schormann and Zilles [5]. In
part, other approaches have been tried to
utilize reference volume data sets, i.e. ana-

tomical [6], metabolic [7], or atlas data [8].
Own work was focused on other histopath-
ologic specimens (uterine cervix) which
have required a cascade of reference-free
registration steps to do an appropriate 3D
tissue reconstruction. With the provided 3D
microscopic data, and thanks to the applied
nonparametric nonlinear registration based
on optical flow, a new quality both for
the 3D reconstruction and consequently for
the morphological assessment of the con-
sidered tumor’s invasion fronts was achiev-
able [9].

In this present work we demonstrate in a
proof of principle the potential of our tech-
nology for alternating histological stain-
ings for spatial co-localization using dedi-
cated staining combinations, but without
requiring laborious multiple-staining tech-
niques for large serial sections. Generally,
different staining of consecutive tissue sec-
tions can provide a valuable amount of addi-
tional information about the structure and
position of different types of tissues. Es-
pecially, the combined use of different im-
munohistochemical stainings is expected to
facilitate new insights e.g. into the inter-
action of cancer, inflammation and healthy
cells in the human body. Multiple or even
double-staining techniques using different
immunohistochemical stains applied on one
and the same section are rather difficult due
to the interaction of the staining agents, and
in many cases are not feasible. The solution
we are proposing is the usage of consecutive
sections (and series thereof), but with differ-
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Summary
Objectives: A proof of principle study was conducted
for microscopic tissue volume reconstructions using a
new image processing chain operating on alternately
stained large histological serial sections.
Methods: Digital histological images were obtained
from conventional brightfield transmitted light micros-
copy. A powerful nonparametric nonlinear optical flow-
based registration approach was used. In order to apply
a simple but computationally feasible sum-of-squared-
differences similarity measure even in case of differing
histological stainings, a new consistent tissue segmen-
tation procedure was placed upstream.
Results: Two reconstructions from uterine cervix carci-
noma specimen were accomplished, one alternately
stained with p16INK4a (surrogate tumor marker) and
H&E (routine reference), and another with three
different alternate stainings, H&E, p16INK4a, and CD3
(a T-lymphocyte marker). For both cases, due to our
segmentation-based reference-free nonlinear regis-
tration procedure, resulting tissue reconstructions
exhibit utmost smooth image-to-image transitions
without impairing warpings.
Conclusions: Our combination of modern nonpara-
metric nonlinear registration and consistent tissue
segmentation has turned out to provide a superior
tissue reconstruction quality.
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ent staining protocols accomplished on the
separate slices.

What basically makes the registration of
images of such sections difficult is the par-
tial loss of spatial correspondences between
the two sections. The reasons for the de-
formation between consecutive sections are
not only due to some differences concerning
the mechanical stress applied during the
preparation, especially while sectioning.
The partly aggressive chemical substances
used for the staining usually cause some in-
dividual, non-uniform shrinkage of the dif-
ferent tissue types which may be comprised
within a certain section. To reconstruct the
spatial correspondences between the indi-
vidual sections the usage of a basically non-
linear registration procedure is required.
The smaller the slicing and staining-orig-
inated distortions to be compensated, the
more flexible adaptations a registration al-
gorithm should allow for, and similarly, the
higher precision demands concerning the
underlying image data should be fulfilled,
and vice versa. This also means that the reg-
istration method of choice is required to ad-
equately treat the degree of deformation. In
standard image processing toolboxes, like
e.g. ITK, powerful nonparametric regis-
tration methods unfortunately are not in-
cluded. As registration approach, we there-
fore consider a nonparametric partial differ-
ential equation approach, as was already
successfully applied in our previous work
[9], and similarly was suggested by others
[10, 11].

The registration of differently stained
images is not at all straightforward due to
the fact that different stainings may exhibit
totally different distributions both in color
as well as in spatial location. However,
since we deal with color images, the stan-
dard distance measure for multi-modal (i.e.
unequal histological stainings in our case)
image registration, the mutual information
(MI) approach [12] unfortunately does not
appear feasible, since the extent of required
histograms for probability density esti-
mates would be far beyond available RAM
sizes on present computer systems. So, the
direct usage of the color images for the reg-
istration process is not possible. Color
space projections in order to provide sec-
ondary scalar (grayscale) image data would

be too simple, since – for our cervical car-
cinoma cases – for one of the applied stain-
ings the inflammational margin appears al-
most indistinguishable from the tumor in
e.g. the luminance image, so the wrong cor-
respondences would manifest during the
registration procedure. At this point, a cer-
tain processing step in order to emphasize
some slight but important color differences
is required. For a solution, it would be rec-
ommended not only to emphasize color dif-
ferences, but to finally provide some scalar
output in order to be able to apply some
simple distance measure for the regis-
tration, and by this to circumvent MI even
in this case (it anyway would be computa-
tionally expensive [13]). This is why we
need to accomplish a segmentation step
prior to the actual registration which, how-
ever, requires the utmost possible consist-
ency referring to the various applied stain-
ings. We consider this intermediate step es-
sential in order to obtain the optimum accu-
racy for the respective registration trans-
formation. Having done the segmentations
at this point, there is no further need to seg-
ment after the subsequent registrations, as
otherwise would be required in order to do
quantitative analyses on the registered
data.

Materials and Methods
Tissue Specimens, Histological
Stainings, and Microscopic
Image Digitization
For this proof of principle, two specimens
were obtained from patients with cervical
cancer which underwent radical hysterec-
tomy. Case A was routinely classified as
tumor stage pT2a, case B as pT1b1. Paraf-
fin-embedded blocks were serially sliced (in
radial direction; thickness: 10 µm). Slicing
and staining, however, unavoidably may in-
duce severe artifacts, mainly different kinds
of distortions. These should later be algo-
rithmically compensated through nonlinear
automatic image registration.

For case A, two distinct stainings were
applied: Hematoxylin-eosin (H&E) and
p16INK4a (with hematoxylin as counter-
stain), which is an immunohistochemical
(IHC) surrogate marker for an activated on-
cogene expression of high-risk type of
human papillomaviruses (HPV), usually
overexpressed in cervical carcinoma. While
H&E is an unspecific routine method
mainly highlighting regions with high
relative cell nuclei densities as in tumor or

Fig. 1
Images of two consecutive
slices from a cervical
carcinoma (case A) under
H&E staining (top) and
under p16INK4a immuno-
histochemical staining
(bottom). Image extents
cover a region of ap-
prox. 8 × 4 mm².
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inflammation, p16INK4a is expected to spe-
cifically mark just the tumor parts alone. For
case B, we additionally applied another IHC
marker, an anti-CD3 antibody which is con-
sidered a T-lymphocyte marker.

Digital images were taken on an upright
bright-field transmitted light microscope
(Zeiss Axioskop 2 plus). Images exhibit a
standard size of 1300 × 1030 and have an
effective spatial resolution of approx. 8 µm
and cover an area of 0.865 cm². In order to
ensure an optimum image quality, several
settings were stipulated throughout image
capturing, i.e. Köhler illumination, lamp
current, damping filters, and diaphragm
opening. Capturing software settings were
considered to get a black reference image, to
determine the correct white balance and to
determine and apply the reference image for
the shading correction.

The Correspondence Problem
A problem arises due to a partial loss of spa-
tial correspondence between two respective
images which possibly may exhibit totally
different distributions both in the position
(see Fig. 1) as well as in color space (see
Fig. 2), unfortunately preventing the direct
registration of the images. As a solution we
introduce a consistent image segmentation
step prior to the above mentioned nonlinear
registration. For the intended registration
(see below) we consider this step essential in
order to obtain optimum accuracy.

Consistent Image Segmentation
The segmentation step plays the central role
in the registration of slices with different
staining, first in order to avoid causing mis-
alignments and second to obtain scalar data
in order to apply the sum of squared differ-
ences as distance measures and by this to
avoid the mutual information therefor. We
focus our interest on the statistical descrip-
tion of the distribution of pixel properties in
a d-dimensional feature space. Every stain-
ing has an individual distribution in the used
RGB color space. The identification of dif-
ferent tissue types does not only include

pixel differences within the color space. The
statistical properties of a pixel’s neighbor-
hood may also be important [14-16]. To in-
clude these properties into the segmen-
tation, we construct a d-dimensional vector
from selected statistical properties of the
pixel (see Fig. 3). The neighborhood is in-
cluded in the segmentation vector using
properties such as the color mean value,
and by the construction of successively
smoothed images (denoted with the level
index l in Fig. 3). Frequency properties of
the respective pixel are included via sam-
pling along an Archimedean spiral, starting
at the respective pixel and analyzing the fre-
quency distribution of a one-dimensional
Fourier transform [17].

Based on the abovementioned feature
vectors denoted as

→
yi we basically apply a

fuzzy c-means clustering method and esti-
mate the parameters of an overall distribu-
tion

(1)

described as a linear combination of normal
distributions p(

→
y | →µ, Σ) approximating the

point clouds in the RGB color space (see
Fig. 2). The estimation of the parameters
→µk, Σk and αk is done using a variant of the
expectation maximization (EM) algorithm
[18, 19]. Using the estimated distribution
P(

→
y ) we assign a class number

(2)

to every pixel in the image and by this obtain
the image segmentation. For the two slices
in Figure 1 with different stainings we obtain
two segmented images S and S´, whereas the
class labels assigned by the algorithm are in-
tended to be made consistent between the
two segmentations. A typical reason there-
for can be some inhomogeneous color satu-
ration within one histological entity in one
staining, while in the corresponding region
of the adjacent, but differently stained sec-
tion appears homogeneously. This means
that the labels in one of the segmentations,
say S´, normally will have to be exchanged
to match the same regions as in the image S.
The segmentation S´ may have more classes
K´ than the segmentation S with K classes.

Fig. 2 Point clouds (corresponding to Fig. 1) representing all pixel color valences contained in the H&E (left) and the
p16INK4a image (right)

Fig. 3 Construction principle of the feature vector from
the color, the mean, and the smoothing levels. In this
example the segmentation vector is constructed from both
the color of the original image and the Gaussian smoothed
image, then the mean value of the unsmoothed and the two
times smoothed image, giving a 3×4 dimensional seg-
mentation vector.

Methods Inf Med 5/2007

616

Braumann et al.



This could occur, for instance, when the sec-
ond staining marks vessels that cannot be
identified in the first staining. In such a
case, the class labels must be merged to de-

scribe the same region in both segmen-
tations. Merging of two or more classes is
also required if – due to staining inhomo-
geneities – an accurate approximation of the

density distribution in color space would
necessitate a superposition of several single
multivariate normal distributions to de-
scribe the staining of one certain tissue type.

Image Registration
Once the segmentation was done for an
image pair, we take the respective two scalar
class label images to compute the displace-
ment vector field

→µ (
→
x) for a nonlinear non-

parametric registration based on optical
flow. The latter will require the (numerical)
solution of a coupled system of fourth-order
partial differential equations: The com-
putation of the displacement field

→µ bases
on the partial differential equation

(3)

with

. (4)

This equation was basically introduced in
[10] and recently studied in [11] and [20],
wherein Δ denotes the two-dimensional
Laplace operator. To allow a smooth con-
vergence for the solution, we introduce an
artificial time t and solve the equation

Fig. 4 A) Displacement field (red lines) obtained by the registration of the segmentations (see Fig. 6 bottom) of a p16INK4a

image (green RGB channel) onto an H&E-stained image (red RGB channel) with the transformed segmentation (blue RGB
channel). Gray-valued regions appear where pairwise segmentations are consistent both before and after the registrations.
Visible combination colors basically occur for the following reasons: Magenta and green margins denote regions where the
p16INK4a image was successfully aligned with the H&E image. A few cyan and reddish sites can be found where the p16INK4a

image failed to perfectly match with H&E. Yellow sites would mean that a mismatch would have been introduced by the trans-
formation, but such regions practically do not occur. B) Corresponding image showing the displacement vector field as line in-
tegral convolution [21]

Fig. 5 First 20 images of case A, a serial section with an
overall of 350 slices

Fig. 6 Principle of the label exchange and label merging (black node) to obtain a consistent segmentation with four classes
for an H&E and p16INK4a-stained image pair from case A

A)

B)
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. (5)

The time discretization is done by an im-
plicit midpoint rule and the dependence on

the position coordinate
→
x in the finite dif-

ference approximation of Δ2 is resolved
using a discrete cosine transform.A detailed
description about the solution procedure
and the used finite difference approxi-
mations can be found in [9]. Finally, when

the displacement field for the registration is
found (see Fig. 4), the original color image
is transformed according to this displace-
ment field to obtain the registered version of
the original data. For a whole set of images
from a histological serial section, such
displacement vector fields to successively
register respective images onto their (pre-
viously registered) predecessors in the
series are determined, so that – after
hundreds of registration steps along one
serial section – a reconstructed volume data
set of the original image modality is ob-
tained.

Results
For this proof of principle, the procedure
outlined above was first applied to case A,
consisting of an overall of 350 slices (see
Fig. 5 for the first 20 slices), with the odd-
numbered stained in H&E (routine stain)
and the even-numbered in p16INK4a. Main
tissue types that appear in images of both
parts are tumor, inflammation, and healthy
stromal tissue, while of course H&E remains
limited for good differentiation between
tumor and inflammation. Further, due to vis-
ible vascular lumina or fissures, bright back-
ground regions are included. This suggests a
total of four classes for the segmentation.

For the segmentation of H&E images,
two smoothing levels l = 1 and l = 2 were
used, and as features were chosen the color,
the mean value in a 7 × 7 neighborhood of
level l = 0 and the slope of the frequency dis-
tribution at l = 1. The p16INK4a images were
segmented using the color of both level l = 0
and l = 1. It has turned out that for p16INK4a

images an additional normal distribution is
required to describe the color of the tumor
region. While four classes were assumed
above, for the H&E images we actually get
four, but for the p16INK4a five were obtained.
Therefore, a reordering step was inserted at
this point to merge the two classes both rep-
resenting tumor (see Fig. 6 for a summary of
the operations for one image pair). In prac-
tice, if the staining constancy is satisfactory
along a series, it can be sufficient to both
estimate the parameters of Equation 1 and
do the interactive merging just based on the

Fig. 7 Virtual plane through case A after the tissue reconstruction process: This image shows a plane with 1 degree tilt by
this passing about 14 consecutive sections (the irregular outline is due to clipping of missing regions at neighboring slices after
the applied registration procedures). While the tumor is more or less visible in all three stainings, it is best delimitable at the
p16INK4a slices as saturated brown structures. Due to the high accuracy of the obtained reconstruction, tumor structures as well
as vessels and many other details smoothly continue in the adjacent slices. Image extents cover a region of approx. 8 × 4 mm².

Fig. 8 Virtual plane through case B: Again, this image shows a plane with 1 degree tilt, by this passing about 17 consecu-
tive sections. Right from each purple stripe (from H&E) follows p16INK4a6 (cervical tumor marker) and then CD3 (T-lymphocyte
marker). The expression of the latter is only moderate for this specimen. Like for case A (Fig. 7), the accuracy of the volume
reconstruction gives smooth slice-to-slice transitions so that all tissue structures can be traced. Image extents cover a region of
approx. 10 × 7.7 mm².
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properties of the first section image (“pilot
image”) of one certain staining. By this, the
segmentation process is considerably ac-
celerated.

Following, the consistent segmentations
obtained by these operations were used to
compute the respective displacement fields
required to accomplish the image regis-
trations. For the depicted example pair in
Figure 1, the p16INK4a was transformed onto
the H&E. In Figure 4 the result of this oper-
ation is depicted (see the figure caption for
details).

After registering the whole serial sec-
tion – the consistent segmentation of every
slice was registered onto the consistent seg-
mentation of its predecessor – a full 3D his-
tological data set consisting of alternate
stainings is ready for inspection. To outline
the quality of the image registration ob-
tained by the proposed method we show the
result for this case A in Figure 7.

Further, the procedure outlined above
was applied to case B, where a serial section
with 84 consecutive slices from another cer-
vical carcinoma was alternately stained with
H&E as routine reference stain, with
p16INK4a labelling the cervical tumor cells,
and additionally with CD3 in order to spe-
cifically detect T-lymphocytes. In analogy
to Figure 7, Figure 8 illustrates the recon-
struction result using a virtual plane. Now,
the spatial relationship of the tumor in-
vasion and the inflammatory response can
be visually inspected interactively and
further assessed quantitatively. Recently,
this technology successfully could be ex-
tended to assess the shape of tumor invasion
with respect to the T-cell infiltration [22].

In order to give a qualitative comparison
of our procedure’s results with other para-
metric approaches, we refer to Figures 9
and 10, where reconstructed planes through
the complete volume data sets are shown.
Therein, for the purpose of comparison for
our two cases A and B, additionally one
example obtained from a rigid registration
and one from nonlinear polynomial regis-
tration is given. Basically, what makes a
quantitative assessment of the reconstruc-
tion performance difficult is the absence of
some reference data set. One can visually
compare the results of these two old meth-
ods with that from our new procedure de-

tailed in this paper. Looking at the struc-
tural details of Figures 9 and 10, and com-
paring them with Figures 1, 7 and 8, re-
spectively, we illustrate the improvements
in tissue volume reconstruction as can basi-
cally be obtained using nonlinear ap-

proaches. In particular, the examples illus-
trate the potential of the applied nonpara-
metric nonlinear registration approach as
underlying registration method for tissue
reconstruction using large histological ser-
ial sections. Referring to some selected

Fig. 9 Three corresponding virtual planes from case A with 90 degrees tilt passing all 350 sections (image extents ap-
prox. 7.8 × 3.5 mm²). While the topmost example was obtained by applying a rigid registration, the middle one results from
a nonlinear polynomial registration. Comparing these two results of parametric registration with the lower result as was ob-
tained with our approach described in this paper, the boundaries of the tumor (brown) clearly appear rather coarse, but not
as smooth as with the new approach. E.g., for the area inside the large dashed yellow circle both the rigid and the polynomial
approach, the tumor does not appear as smooth as in Figures 1 or 7 showing the same specimen. The small white dotted circle
indicates some small vessels virtually cut in transversal direction partially with tumor inside. Here, the rigid approach (top)
fails, while the results of the polynomial and the nonparametric approach appear comparable.
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areas the differences in the results are quali-
tatively discussed in the figure captions.
The limitations of the nonparametric ap-
proach are seen in the image-global effect
of the respective estimated parameter set,

whereas the degree of the polynomials can-
not be arbitrarily raised without a consider-
able risk for unwanted warping. E.g. in the
area to the right of the yellow ellipse in Fig-
ure 9 some small tumor structures appear

even worse in the reconstructed plane as
with using the rigid approach alone! The
nonparametric approach, however, with the
results depicted at the bottom of Figures 9
and 10, can much better adapt to local mis-
alignments in order to compensated most of
them throughout the whole image.

Since for the two uterine cervix carcino-
ma cases, the tumor invasion front is of par-
ticular interest, Figures 11A und B, respec-
tively, depict the segmented tumor surface
(using an implementation of hardware-
accelerated 3D volume rendering in this
case) which can be interactively inspected
for detailed analyses.

Discussion
We have demonstrated a procedure for tis-
sue volume reconstruction utilizing a com-
bination of consistent segmentation and
nonparametric nonlinear registration for
microscopic images of histological sections
of different stainings. The method was
successfully applied for a proof of prin-
ciple study onto two cases (A and B),
where the first is an alternating serial
section H&E/p16INK4a and the latter
H&E/p16INK4a/CD3. The results (esp. see
Figs. 9 and 10) exemplify how the tissue
volume reconstruction improves when com-
pared to parametric approaches.

Fig. 10 Another three corresponding virtual planes from case B with 90 degrees tilt passing all 84 sections (image extents
approx. 4.8 × 0.84 mm²). Due to three interleaving stainings, the structures are not as good recognizable as for case A in Fig-
ure 9. Again, the topmost example was obtained by applying a rigid registration and the middle one results from a nonlin-
ear polynomial registration. The third result from the nonparametric nonlinear registration approach exhibits the smoothest
margins for the tumor (brown), the inflammation (dark brown) as well as for the cavities (cp. the virtual plane in Fig. 8 from
the same specimen). Looking at the dashed green ellipse, the enclosed tissue consists of tumor, normal stroma and some large
vessel. These structures appear almost invisible in the rigid registration result, while the nonlinear polynomial and (even
better) the nonparametric nonlinear approach do reconstruct these small structures quite precise. Similarly, the orange solid-
line ellipse indicates an area wherein small tumor structures can be found. Again, the more sophisticated the approach, the
better, clearer, and sharper the structures (with smooth boundaries due to smooth slice-to-slice transitions) appear.

Fig. 11 3D visualizations of the segmented tumor invasion front for cases A and B, which clearly exhibit different patterns. For reasons of clearness, for this depiction only the major part
of the respective tumor within the reconstructed volume is shown.

A) B)
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Gijtenbeek et al. [23] recently have pub-
lished a method to 3D reconstruct cortical
tumor microvasculature from serial sec-
tions. Their approach does not pay attention
to the tumor tissue itself. They analyzed not
only single-component-stained serial sec-
tions, but also double-alternating and
double-stained sections. While the first was
applied only to reconstruct the vessels using
the endothelium marker CD34, the second
and third method was accomplished addi-
tionally with smooth muscle actin. What
was not applied is any counterstain, by this
decisively simplifying the automatic seg-
mentation step. However, it doesn’t become
obvious how the authors could manage the
second method with double-alternating
staining with their registration method
using a normalized correlation metric to de-
termine affine transforms. The latter may be
sufficient for certain questions, however,
better results will be obtained with non-
linear approaches, since the underlying
slicing-caused distortions are basically non-
linear as well.

Palm et al. [24] have proposed a method
to 3D reconstruct rat brain tumors using
triple-alternating serial sections consisting
of two different autoradiographs and some
Cresyl-violet histological staining. The
latter was separately registered as a refer-
ence stack, and in a second step the two
autoradiographic data sets were then regis-
tered with their closest histological images
within the sequence. They also have chosen
normalized correlation, but just applied a
rigid registration, by this taking even a
higher loss of accuracy compared to Gijten-
beek et al. It can be assumed that the visible
outline of the brain effectively was the most
decisive registration criterion, so that a seg-
mentation step prior to the registration was
not required as was in our case.

Concerning our approach, the appli-
cation of MI as a distance measure was not
an option for the following reasons: The
right side of Equation 4 represents the

derivative of ,

the sum of squared differences which serves
as a distance measure here. However, MI is
not differentiable in a similar way, but
should be for the nonparametric differential

equation approach. Moreover, as mentioned
above for color images as in our case, MI
leads to extreme-sized histograms, which
are not feasible for application, and gen-
erally would be computationally extremely
expensive.

With the present work we would like to
exemplify the potential for large serial sec-
tion based 3D tissue volume reconstructions
for histological analyses [25]. The recon-
struction provides an accurate 3D tissue
data set that allows performing quasi-seam-
less virtual oblique planes through the tissue
“block”. Using interactive software, the
structures like the tumor can be viewed from
all angles, substructures can be highlighted
and interactions can be viewed. With our ap-
proach using large histological serial sec-
tions combined of different stainings we
could demonstrate a powerful new tech-
nique for detailed 3D visualization and
analysis of complex tissue intersections.

Concerning the registration procedure,
comparing to the parametric registration ap-
proaches, the reconstruction using the non-
parametric method using Equation 5 pro-
duces considerably higher computational
expenses compared to the parametric ap-
proaches (processing times in the order of
minutes instead of seconds), however – al-
though a small drawback – in the framework
of histological slide preparation and the
digitization of hundreds of images this
additional time requirement cannot be con-
sidered as a decisive bottleneck. For the con-
sistent segmentation, which is the key for
the usage of alternately stained serial sec-
tions, the merging step requires some user
interaction. Fortunately, this can be done for
the whole series in one step.

Even though the serial section based pro-
cedure may not be considered for clinical
routine, it provides a practicable alternative
for histology research. Going beyond our
previous work [9] focusing on the 3D pat-
tern of invasion for cervical tumors, we now
could successfully demonstrate an impor-
tant expandability of our technology for
computational tissue volume reconstruc-
tion. In order to do a systematic evaluation
of the proposed methodology, our work will
continue with the application of this algo-
rithm both on more cases and on largerVOIs
and the inclusion of further stainings, e.g.
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