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Summary

Objectives: Array-comparative genomic hybridization
(aCGH) is a high-throughput method to detect and map
copy number aberrations in the genome. Mulfi-step
analysis of high-dimensional data requires an infe-
grated suite of bioinformatic tools. In this paper we
defail an analysis pipeline for array (GH data.
Methods: We developed an analysis fool for array CGH
data which supports single and multi-chip analyses as
well as combined analyses with paired mRNA gene ex-
pression data. The functions supporting relevant steps
of analysis were implemented using the open source
software R and combined as package aCGHPipeline.
Analysis methods were illustrated using 189 (GH
arrays of aggressive B-cell lymphomas.

Results: The package covers data input, quality control,
normalization, segmentation and dlassification. For
multi-chip analysis aCGHPipeline offers an algorithm
for automatic delingation of recurrent regions. This fask
was performed manually up fo now. The package also
supports combined analysis with mRNA gene ex-
pression data. Qutputs consist of HTML documents to
facilitate communication with dlinical partners.
Conclusions: The R package aCGHPipeline supports
basic tasks of single and multi-chip analysis of array
(GH data.
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1. Introduction

Aberrations in copy number play an impor-
tant role in various diseases, especially in
the pathogenesis of malignant tumors [1].
The length of aberrant segments can range
from a few base-pairs to whole chromo-
somes. Copy number aberrations can affect
gene expression: Deletions may lead to
tumor suppressor gene inactivation and
copy number gains may cause activation of
oncogenes [2].

Array comparative genomic hybridi-
zation (aCGH) is a method to detect and
map these copy number aberrations in the
genome. Several thousand known DNA
clones or oligonucleotides are spotted on a
chip [1]. Each clone represents a specific re-
gion of the genome. Resolution and cover-
age of the analysis depends on the number
of spotted clones and their distribution in
the genome.

DNA is isolated from test and reference
tissue and differentially labeled using flu-
orescence dyes. A balanced mixture of la-
beled test and reference DNA is hybridized
to the CGH array.

Test and reference DNA compete for free
binding sites [3]. Signals of test and refer-
ence fluorescence intensity at each clone
position are measured, preprocessed [4] and
combined as a log2 ratio. This signal is as-
sumed proportional to the log2 ratio of test
and reference copy number in the cor-
responding genomic region. If the reference
tissue is chosen euploid, information on
copy number changes in the test sample can
be obtained. Raw data from one CGH-array

experiment consists of several thousand
clone-specific log2 ratios.

2. Motivation

Due to data complexity, manual interpreta-
tion of array CGH data is time-consuming
and error-prone. Automatic methods which
facilitate the array CGH analysis are
required.

We developed an analysis tool for array
CGH data [5] which supports single and
multi-chip analysis as well as combined
analysis with paired mRNA gene expression
data. The methods were implemented using
the open source software R [6] and com-
bined as package aCGHPipeline. The pack-
age is available upon request. Most of the
currently available analysis programs are
limited in the capability of multiple-chip
analysis. For example, CGH-Plotter [7] and
CGHPro [8] provide only a graphical com-
parison of different chips but there is no sup-
port for further statistical investigations of
genetic differences. The aim of aCGHPipe-
line is to overcome these limitations.

Here we describe relevant steps in the
analysis of array CGH data that can be per-
formed using functions from our tool. Fig-
ure 1 gives a schematic overview over tasks
addressed below which are supported by the
package. Illustrations are taken from an
analysis of array CGH data of 189 aggres-
sive B-cell lymphomas [9]. Each array con-
tained 2799 BAC/PAC clones. 1500 of these
clones cover the whole genome at intervals



of approximately 2 Mb, the remaining 1299
clones span regions known to be frequently
involved in B-cell neoplasms or contain
proto-oncogenes Or tUmor suppressor genes

[9].

3. Methods

3.1 Quality Control

As for other high-throughput methods a
quality control step is required to detect and
reject invalid data. For every chip and every
clone aCGHPipeline calculates the median
absolute deviation and the proportion of
missing values. Summary statistics, histo-
grams and lists of arrays and clones which
are suspicious are summarized in a user-
friendly HTML output file for further in-
spection.

Large-scale copy number polymor-
phisms also occur as natural variation of the
normal human genome. The length of poly-
morphic segments ranges from kilo- to
megabases [10]. To distinguish between
normal variation and cancer-specific aber-
rations, it is important to compare the ge-
nomic positions of the used clone probes
with known polymorphic sites. Therefore
every clone on the array is compared with
the “Database of Genomic Variants”
(http://projects.tcag.ca/variation/)  [11].
Clones which are located in regions with
known copy number polymorphisms are
marked, enabling the user to interpret the
measured values cautiously.

3.2 Normalization

Imbalances in the amount or quality of used
test and reference DNA may lead to sys-
tematic array-specific bias in the measured
log?2 ratios. Differences in labeling efficien-
cies of the fluorescence dyes may be elimi-
nated by using a dye swap design [12]. The
aim of normalization is to remove chip-
specific bias. aCGHPipeline provides a glo-
bal normalization for the correction of array
CGH data: Assuming that the majority of
clone positions is euploid in both tissues
most of the log2 ratios should vary about
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zero. Thus, a measure of location, like mean,
median or mode, can be used to estimate the
bias individually for each array. The bias is
then removed by subtracting the measure of
location from all measurements on this
array. We take the 50% of the measurements
with the highest values in the corresponding
density function and calculate the mean of
these values weighted with the appropriate
density as an estimator for the mode of the
distribution. We suggest using this mode es-
timator for normalization, because based on
a simulation study it is more robust in cases
with a relevant proportion of aberrant
clones.

3.3 Segmentation

The goal of array CGH analysis is the detec-
tion of copy number aberrations in tumor
DNA. Measured signals have to be classi-
fied in chromosomal gains, losses and re-
gions with normal copy number. Copy
numbers cannot be directly read off the sig-
nal ratios: The signal to noise ratio is rather

low [13] and samples of primary tumors are
typically contaminated with a certain
amount of non-tumor DNA thus attenuating
the ratio. A strategy for noise reduction is
needed.

Copy number aberrations typically occur
in segments comprising several clones. Seg-
mentation methods aim at detecting seg-
ments of neighboring clones with the same
copy number and to smooth the signal to re-
duce the noise.

Several segmentation algorithms for
array CGH data are described in the litera-
ture [2, 7, 14-19]. We have implemented an
interface to the Hidden Markov Model
(HMM)-based segmentation method of
Fridlyand et al. [17] and to the Circular
Binary Segmentation (CBS) method of
Olshen et al. [16]. Based on the results from
other research groups [20, 21], and fol-
lowing our own experience, we currently
recommend using the CBS method of
Olshen.
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Fig. 2 The upper graphicillustrates an array CGH profile of a single chip. Black points show the normalized log2 ratios in
genomic order. Grey bars indicate the dlassified data (0 = normal copy number; 1 = copy number gain; —1 = copy number
loss). The lower graphic illustrates the segmentation for chromosome 9. The bold grey line marks the resulting segments.

Thresholds for classification are indicated by dotted black lines.

3.4 (lassification

After segmentation each array is repre-
sented by a set of segments and smoothed
segment-specific signals. To ease inter-
pretation the segments are classified into
gains, losses and segments with normal
copy number. Note that with current tech-
nology further differentiation within the
loss or gain category is difficult except for
high-level amplification peaks. Thresholds
are required to achieve such a subdivision, If
a segment level is above the threshold, the
segment is classified as a gain. A segment
which is below minus the threshold is
counted as a loss. This process is also re-
ferred to as threshholding. aCGHPipeline
supports choosing a fixed or a noise-de-
pendent threshold. A fixed threshold is uni-
formly specified on the log?2 ratio scale for
all arrays. A noise-dependent threshold is
specified in units of an array-specific noise
estimate. For each array aCGHPipeline
provides a robust noise estimator based on
median absolute deviation of the differences
between measured log2 ratios and the cor-
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responding smoothed segment levels. Thus
the noise estimate is not inflated by ge-
netic heterogeneity. Choosing the noise-
dependent approach leads to an increased
threshold for chips with poor quality but not
for chips with a high genetic heterogeneity.

Users have to specify the classification
threshold manually considering informa-
tion on the fraction of normal tissue con-
tamination in tumor samples and the sensi-
tivity of the array type used. For a given
array platform the sensitivity can be as-
sessed on the basis of data with known copy
number aberrations or through the analysis
of DNA with different numbers of X chro-
mosomes [13, 22].

An example of classified array CGH
data is shown in Figure 2. After classifi-
cation the genetic heterogeneity of each
array can be summarized, e.g. by calculat-
ing the number of aberrant segments or
clones. These heterogeneity measures help
to quantify the instability of the genome in
different tumor entities or to analyze the
impact of heterogeneity on the prognosis
of patients.

3.5 Multi-chip Analysis

When analyzing a large set of tumor
samples a major biological question is to de-
tect regions which are commonly aberrant
and therefore may be key events for tumor
development or proliferation.

A major objective of multi-chip analysis
is thus to delineate genomic regions which
are characteristically aberrant in a specific
type of cancer. These recurrent regions pro-
vide lists of putative candidate genes for
biological follow-up research. Presence or
absence of recurrent regions in single tis-
sues define candidate variables for prog-
nostic factor analyses.

Up to now these recurrent regions were
visually determined e. g. by looking at heat-
maps (Fig. 3b). We developed an algorithm
to automatically propose recurrent regions.
We first calculate and plot the frequencies
of gains and losses for each clone along the
genome (see Fig. 3a for a single chromo-
some). To delineate recurrent regions as
“genomic regions which are characteris-
tically aberrant in the data” we divide clones
into segments with the same frequency of
aberration and define recurrent regions as
those resulting segments that are both above
a certain threshold and dominate adjacent
segments.

3.5.1 Segmentation of Multiple-chip
Frequency Data

For segmentation we use a Hidden Markov
Model (HMM) [23]. Each state has a bi-
nomial emission distribution with varying
underlying probability p. HMMs with up to
five states are fitted chromosome-wise to
the frequencies of gains and losses of the
clones because the number of recurrence
levels is initially unknown. The model that
fits best is selected via the Akaike informa-
tion criterion (AIC). Smoothing is achieved
through a state transition matrix giving high
probability to staying in the same under-
lying state. The result of the segmentation
procedure for gains and losses is illustrated
in Figure 3a.



3.5.2 Threshold for Recurrence

As a next step we have to separate “char-
acteristic” segments from sporadic ones.
Every segment is therefore compared with a
frequency threshold. Regions which show
an aberration more frequently than the se-
lected threshold were counted as recurrent
segments. Recurrent segments that domi-
nate neighboring segments are selected as
recurrent regions.

The user can specify a frequency thresh-
old or use a threshold that is suggested by
our algorithm. aCGHPipeline uses a
2-means clustering of the frequencies of
gains and losses of the clones to distinguish
sporadic form characteristic aberrations.
The mean of the center of the “sporadic
aberrations” and the center of the “char-
acteristic aberrations “ centers is used as the
threshold.

Automatically delineated recurrent re-
gions should be checked manually by in-
specting a heatmap because theoretically
the identity of the cases contributing to a re-
current region may vary along the segment
indicating that the region should be split.

3.5.3 Analysis of Recurrent Regions

Having delineated the recurrent regions in
the data set one may want to decide on pres-
ence or absence of recurrent regions in
single samples. We have implemented a vot-
ing algorithm for this purpose. A recurrent
region consists of a set of clones. A recur-
rent region is called present in an individual
sample if and only if a user-specified pro-
portion (e.g. 50%) of its clone set is classi-
fied as concordant aberration.

The algorithm determines a matrix of
CGH arrays by recurrent regions indicating
presence and absence of the recurrent re-
gions on the respective chip. The horizontal
blue bar in Figure 3b indicates the result of
the voting algorithm for the recurrent region
marked by the vertical grey bar.

3.6 Analysis of Paired Array CGH
and Gene Expression Data

If paired array CGH and gene expression
data is available one can ask whether a re-
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Fig. 3 a) Aggregated data of 183 lymphoma CGH arrays for chromosome 12. Light and dark grey bars indicate the propor-
tion of gains and losses for each clone. Segmentation via HMM is shown by bold lines. Black horizontal lines mark the thresh-
old for recurrence. The recurrent region (45.7-56.9 mb) is highlighted by a bold black bar. b) The heatmap of copy number
aberrations on chromosome 12. Light grey lines indicate copy number gains, dark grey lines copy number losses. White points
mark missing values. The bold bar on the left side shows the recurrent region. Black marks on the top indicate cases in which
the recurrent gain is called present.
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Fig. 4  Gene expression data in a recurrent loss on chromosome 6. Vertical lines illustrate the 95% confidence intervals for
the differences in gene expression of cases with and without a loss. Bold lines mark probe sets with a significant gene dose

effect.

spective aberration is associated with a gene
dose effect on mRNA gene expression.
Given the assignment of copy number aber-
rations in recurrent regions to individual
samples as described above, mRNA ex-
pression in samples with the aberration can
be compared to samples without this ab-
erration,

Figure 4 depicts confidence intervals for
the difference in mean gene expression
comparing cases with and without a loss for
genes mapping into a recurrent region on
chromosome 6 in lymphoma data.

If a higher resolution is desired, a map-
ping assigning copy number information
from individual clones to genes in the corre-
sponding genomic region is required.

We have implemented an algorithm that
generates a data pair for each gene ex-
pression probe set consisting of the respec-
tive mRNA expression level and a copy
number state derived from the array CGH
data. If a probe set maps on one or more
CGH clones their copy number state is as-
signed if equivalent. If the probe set maps in
a gap between clones on the CGH array the
copy number state of the neighboring clones
is returned if equivalent. Otherwise a miss-
ing value is assigned.

4. Application

The analysis pipeline was applied to a set of
189 arrays of aggressive B-cell lymphomas.
Within the quality control step six arrays
were rejected due to high noise. In addition
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48 clones were excluded from the analysis
because they were missing in more than 50
percent of the cases. 291 of the remaining
clones are located in regions with known
copy number polymorphisms.

Array CGH data was normalized using
global normalization with mode estimator.
Normalized log2 ratios were smoothed by
applying the Circular Binary Segmentation
(CBS) method of Olshen et al. with default
parameters.

For a subset of 106 arrays, manual inter-
pretation of the data was available. Best con-
cordance between manual and automatic
classification was achieved by using a fixed
threshold of 0.17 for the classification of the
segments resulting from CBS. In that case
96.8% of all clones were assessed con-
sistently. More than 83% of the clones
which were called aberrant by manual inter-
pretation were concordantly detected by the
automatic method. Investigation of dis-
crepant results showed that in cases where
one method assigned a copy number gain
while the other assigned a loss mostly repre-
sented sign errors within the manual analy-
sis. The bulk of discrepancies occurred at
boundaries of aberrant regions and in cases
where the putative aberration is quantita-
tively weak. In these cases a validation of
the results is difficult.

Using the methods for multi-chip analy-
sis 16 regions of recurrent gains and six
regions of recurrent losses were delineated
for further investigation.

5. Conclusion and Outlook

With aCGHPipeline we developed a com-
prehensive tool for the analysis of array
CGH data. The package covers data input,
quality control, normalization, segmen-
tation and classification. The automatic
analysis essentially reproduced the manual
interpretation. It is less error-prone, less
time-consuming and more reproducible,
thus further analyses of our group will be
based on it.

For multi-chip analysis aCGHPipeline
proposes an algorithm for automatic delin-
eation of recurrent regions. This task was
performed manually up to now. The package
also supports combined analysis with
mRNA gene expression data. Results are
presented as HTML documents to facilitate
communication with clinical partners.
aCGHPipeline is implemented in R in
which further data analysis can easily be
performed. The current version of the pro-
gram provides no graphical user interface so
that users need a basic knowledge of R
programming. A planned integration of
aCGHPipeline in the gene expression ware-
house (GeWare) [24] will add this feature.
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