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Abstract

The observed structure of protein interaction networks is corrupted by many false positive/negative links. This

observational incompleteness is abstracted as random link removal and a specific, experimentally motivated (spoke) link

rearrangement. Their impact on the structural properties of gene-duplication-and-mutation network models is studied. For

the degree distribution a curve collapse is found, showing no sensitive dependence on the link removal/rearrangement

strengths and disallowing a quantitative extraction of model parameters. The spoke link rearrangement process moves

other structural observables, like degree correlations, cluster coefficient and motif frequencies, closer to their counterparts

extracted from the yeast data. This underlines the importance to take a precise modeling of the observational

incompleteness into account when network structure models are to be quantitatively compared to data.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Recent advances in the identification of protein interactions [1–3] have greatly extended their number in
actual data sets [4–7]. The accumulated knowledge about these complex mutual interactions of single proteins
is represented in protein interaction networks where proteins are represented by nodes and interactions by
links between respective nodes. Investigations on the topological structure of the network graphs contribute
significantly to the understanding of the organizational principles and evolutionary strategies behind such
complex interaction networks.

Several models have been proposed for the modeling of the structural evolution of protein interaction
networks [8–12]. All of them are based on the idea of gene duplication and mutation to be the responsible
mechanism for the evolution from a small number of proteins up to several thousands known today. This
mechanism, where links of highly connected nodes are more likely to be duplicated, is a biological
e front matter r 2006 Elsevier B.V. All rights reserved.
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representation of network growth with preferential attachment [13]. The model described in Ref. [12] fits best
to observed properties of real yeast interaction networks, extracted for example from the DIP database [4].
During one evolutionary step of this model (see Fig. 1) a randomly selected node is copied with all its links.
With probability d each of the copied links is then subject to removal, and with probability p a new
(homodimer) link is established between original and copied node. If after the probabilistic link removals and
addition the copied node is left without any link, it is deleted. Fig. 2 illustrates the dependence of the degree
distribution on the model parameter d. As for the giant component of real yeast data [4], the number of nodes
has been set to Ngc ¼ 4687. The parameter p ¼ 0:1 has been estimated according to the number of
homodimers in real yeast data sets. It has no significant influence on the degree distribution. For d ¼ 0:58 the
degree distribution matches its data counterpart. Other network properties, like degree correlation, cluster
coefficient and selected motifs, also agree with data to some extend (see Fig. 4).

Although the simple gene-duplication-and-mutation mechanism disregards any selection process and does
not take further regulatory mechanisms into account, it gives us a principle understanding of how evolution
went to work. However, caution should be taken when it comes to a biological interpretation of the fitted
model parameter values. One has to take into account that the actual data of protein interactions contains a
large number of false links. In Refs. [14–16] different methods are applied to provide an estimate about the
amount of links which are set in the real yeast data sets but do not exist (false positives), and those which exist
but are not contained in the data set (false negatives). Mostly by comparing high confidential with high
throughput data sets, current estimates are that the total number of interactions is up to 30,000 compared to
about 15,000 known today [14,16] and that within these 15,000 interactions 50% of the links are wrongly
assigned [15,16].

Given this amount of observational incompleteness, two driving questions emerge: can we compare a model
like [12] ‘‘as is’’ with data, and how relevant are fitted model parameters? The aim of this paper is to analyze
how much and in what directions various forms of observational incompleteness modify extracted structural
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Fig. 1. The gene-duplication-and-mutation model of Ref. [12]: (a) random selection of a node, (b) copy of this node with all of its links, (c)

deletion of copied links with probability d, and (d) introduction of a new link between original and copied node with probability p.
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Fig. 2. Degree distribution resulting from the network model proposed in Ref. [12] for various parameter values d. The other parameters

have been set to N ¼ 4687 and p ¼ 0:1. The value d ¼ 0:58 fits best to the yeast protein interaction data taken from the DIP database [4].
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properties of protein interaction networks, like degree distribution, degree correlations, cluster coefficient and
motifs.

In abstracted form, the observational incompleteness leading to the occurrence of false negative/positive
links can be modeled as link removal/rearrangement applied to an initial ‘‘true’’ network. The simplest variant
is completely random removal/rearrangement of links. Its effect on scale-free networks has already been
discussed [17]. Another form of link removal is subnetwork sampling, like snowball sampling [18,19],
truncated random walk sampling or traceroute exploration [20].

Throughout this paper we will make use of the network model of Ref. [12]. It serves to synthetically generate
‘‘true’’ protein interaction networks. Section 2 discusses completely random deletion of links. Section 3
introduces a very specific random link rearrangement, which is directly motivated from the experimentally
applied complex purification methods [1,2]. A conclusion and an outlook is given in Section 4.
2. Random link removal

Random link removal represents the simplest modeling to introduce false negative links. A network with N

nodes and L links is considered to be the initial ‘‘true’’ network. One after the other a link is selected randomly
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Fig. 3. Degree distributions for various random link removal strengths n. (Top) Parameters of the gene-duplication-mutation model [12]

have been set to N ¼ 4687, d ¼ 0:58, p ¼ 0:1, such that hki � 6:47 for n ¼ 0. (Bottom) Model parameters have been chosen such that the

size of the giant component and the average degree become Ngc � 4687 and hki � 6:47 after link removal; for n ¼ 0:2, 0:31, 0:395 rescaled

parameter values are ðN; dÞ ¼ ð4950; 0:55Þ, ð5100; 0:53Þ, ð5250; 0:51Þ, and p ¼ 0:1. The various degree distributions have been sampled from

the respective giant components of 50 independent network realizations.
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and then removed from the network. The removal strength n ¼ DL=L counts the relative number of deleted,
i.e., false negative links. The impact of this random link removal on the degree distribution pðkÞ of the gene-
duplication-and-mutation network of Ref. [12] is shown in Fig. 3a. With increasing removal strength the
resulting degree distribution deviates more and more from its initial counterpart.

Admittedly, the degree distributions of Fig. 3a with d ¼ 0:58 and n40 resemble those of Fig. 2 with d40:58
and n ¼ 0. In fact, the shown degree distributions with n ¼ 0:2, 0:4, 0:6, 0:8 match those resulting from
d ¼ 0:62, 0:66, 0:73, 0:85, respectively. By looking at the degree distribution only, a network with specific d,
but subject to random link removal, appears like a network corresponding to a larger d.

Note however, that this comparison is not mature. With n40 the size Ngc of the giant network component,
from which all degree distributions of Fig. 3a have been sampled, is reduced. For d ¼ 0:58 and n ¼ 0:2, 0:4,
0:6, 0:8 it results in Ngc � 4400, 4000, 3350, 2100, respectively. By model construction the initial size Ngcðn ¼
0Þ ¼ N ¼ 4687 is independent of the parameter d. Consequently, the number of nodes contained in the giant
component does not agree between the link-removed model network and the reparametrized initial model
network, although their degree distributions match.

For a proper comparison the model network reduced by random link removal should end up with the same
average degree hki and the same size Ngc for the giant component as the reparametrized initial network model.
For reference, we choose hki ¼ 6:47 and Ngc ¼ 4687 as observed in the yeast data [4]. This requires the model
network to have initially more nodes and links before random link removal sets in. Initial numbers of nodes
and links are not independent of each other and require a careful tuning, so that after random link removal a
precision landing is made at the targeted hki and Ngc. For example, for removal strengths n ¼ 0:2, 0:31, 0:395
the rescaled parameters are ðN; dÞ ¼ ð4950; 0:55Þ, ð5100; 0:53Þ, ð5250; 0:51Þ. The remaining parameter p ¼ 0:1
has been kept fixed. Note, that even larger removal strengths are not feasible for the chosen network model. It
would require do0:5. In this regime the model is not self-averaging any longer [11].

Fig. 3b illustrates the degree distributions obtained after random link removal has been applied to the
parameter-rescaled model realizations. All distributions corresponding to different removal strengths collapse
to one single curve. This curve collapse is somewhat surprising, because by construction only the size of the
resulting giant network component and the resulting average degree have been set the same. Each curve results
from the interplay of two effects: initially, i.e., before random link removal sets in, a smaller d leads to a flatter
degree distribution (see again Fig. 2), which is then, once random link removal sets in, turned into a steeper
distribution (see again Fig. 3a).

If the resulting degree distributions had all been Poissonians, then the curve collapse would have been
straightforward to understand. The rate equation for random link removal [17]

dpk

dn
¼

k þ 1

ð1� nÞ
pkþ1 �

k

ð1� nÞ
pk (1)

is solved by pk ¼ ðl
k=k!Þe�l with l ¼ hki ¼ 2Lð1� nÞ=N. A Poissonian degree distribution remains

Poissonian, although with rescaled parameter l. Hence, a Poissonian network constructed with hki ¼ l can
also be obtained by first constructing a denser Poissonian network with hki ¼ l=ð1� nÞ, which is then subject
to random link removal of strength n.

Also for scale-free distributions pk�k�g the curve collapse can be constructed with a rescaling of model
parameters. In case of a growth process with preferential attachment p�k þ l, the model parameters are the
number m of open links, with which a new node enters the network, and the attractiveness l [21]. They
determine the scale-free exponent g ¼ 3þ l=m. Now, Ref. [17] has shown that during the preferential-
detachment-like random link removal, where the initial average degree hki ¼ 2m is reduced, the scale-free
exponent is conserved in the large-k regime. This implies that after random link removal with strength n the
resulting network appears like one which has been grown with rescaled model parameters mrescaled ¼ ð1� nÞm
and lrescaled ¼ ðmrescaled=mÞl ¼ ð1� nÞl.

Although the small excursions to Poissonian and scale-free networks have shed some light on the nature of
the curve collapse, its appearance in connection with gene-duplication-and-mutation networks remains
without a deeper explanation. Nevertheless, from a pragmatic point of view we can say the following: if we
consider a gene-duplication-and-mutation network as the ‘‘true’’ network and introduce false negatives in the
form of random link removal, then the resulting degree distribution appears like one obtained from the same



ARTICLE IN PRESS
M. Kuhnt et al. / Physica A 373 (2007) 759–769 763
gene-duplication-and-mutation process, but with different parameters. It would be inappropriate to give a
biological interpretation to the magnitude of the extracted parameters.

The curve collapse motivates to look at observables beyond degree distribution. The average degree hkngbjki

for neighbors of a node with degree k represents a measure for degree correlations. Fig. 4a illustrates its
dependence on the removal strength. The same procedure with rescaled model parameters as for Fig. 3b has
been applied. With increasing n the degree correlations are reduced to some minor extend. They stay close to
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Fig. 4. (a) Degree correlation, (b) degree-dependent cluster coefficient, and (c) relative frequencies of selected motifs (see Fig. 5) for

various random link removal strengths n. Model parameters are the same as in Fig. 3b. The various distributions have been sampled from

the respective giant components of 50 independent network realizations. For comparison respective distributions obtained from the yeast

protein interaction database [4] are also shown.
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Fig. 5. Motifs used for the analysis.
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the n ¼ 0 model correlations. The comparison with the correlations observed in the yeast data makes clear that
all curves corresponding to different n more or less match with the same quality.

A similar finding is obtained for the degree-dependent cluster coefficient CðkÞ. It represents the fraction of
triangles formed by a node with degree k and its neighbors out of the maximum possible number kðk � 1Þ=2.
Fig. 4b shows its dependence on the removal strength. CðkÞ decreases with increasing n, but remains within the
same order of magnitude as for n ¼ 0. Compared to the yeast data, all n curves are too low and no one of them
is really to be favored over the other ones.

A corresponding conclusion can also be drawn from an analysis based on motif structures. A variety of
motif systematics has been discussed in the literature [22–25]. Our selected set is depicted in Fig. 5. It is
restricted to triangles, squares and pentagons with different intra-link structure. The loops within these motifs
represent potential regulatory mechanisms. The total number M ¼

P
motifsMmotif of all selected motifs as well

as their relative frequencies Mmotif=M have been determined in dependence on the random link removal
strength. Fig. 4c reveals that the total number decreases with n. At n � 0:2 it matches its yeast data
counterpart. Within the model the three dominant contributions come from the motifs ‘‘sqr’’, ‘‘pent’’ and
‘‘pent1’’. The relative frequency of ‘‘sqr’’ basically remains independent of n, but noticeably overestimates the
frequency extracted from the yeast data set. With increasing removal strength the relative frequency of ‘‘pent’’
increases slightly, whereas that of ‘‘pent1’’ decreases to some small extend. Both more or less agree with their
yeast data counterparts. Except for ‘‘pent2b’’, no agreement is reached for the relative frequencies of all
‘‘pent’’ motifs with more than one intra link. The significant model underestimations hold for all link removal
strengths.

3. Spoke link rearrangement

So far the modeling of observational incompleteness has only taken subnetwork sampling in the form of
random link removal into account. In this way only false negative links have been created. For the modeling of
false positive links some kind of link rearrangement or link addition is needed. We will now discuss a very
specific random link rearrangement, which is directly motivated from the shortcomings in the generation and
interpretation of protein-interaction data.

Using the complex purification methods, namely affinity precipitation and affinity chromatography [1,2], a
protein is tagged and placed into the cell lysis. The tagged protein (bait) is then isolated and analyzed with its
associated proteins (preys). It is not obvious how to assign links between the bait and preys found in the
protein complex. In the commonly used spoke algorithm [26] direct links are defined between the bait and all
its preys. This approach is illustrated in Fig. 6. It does not take into account the possibility that the bait is not
directly interacting with all preys but via intermediate proteins. This results in false positive and negative links
(Fig. 6a). Moreover, possible interactions between the prey proteins themselves are also not taken care of,
resulting in even more false negative links (Fig. 6b). Similar effects occur with the yeast-two-hybrid [16] and
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a (blue) false negative.
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the synthetic lethality methods [3]. Although the yeast-two-hybrid method characterizes the interaction
between two target proteins, no assurance can be given that this interaction is not provided by an intermediate
protein. With the synthetic lethality method an interaction is assumed between two functional correlated
proteins but even if they are part of the same complex, it is not clear if a direct interaction exists.

To study the influence of this effect on the network topology we propose a local random link
rearrangement, which hereafter is called spoke link rearrangement. After selection of an initial (bait) node, one
of its first (prey) neighbors is chosen at random. The latter then continues to randomly choose one of its first
neighbors, excluding of course the initial node. Two cases then have to be distinguished. If the last node is a
second neighbor of the bait node, a new, but then false-positive link between these two nodes is introduced
and the old link between the two prey nodes is removed to gain false-negative status; see again Fig. 6a. In the
other case, the second prey node turns out to be a first neighbor of the bait node, upon which only the link
between the two prey nodes is removed and becomes false-negative; see again Fig. 6b. Due to the second case,
the spoke link rearrangement is not a pure link rearrangement. However, the cluster coefficient is small
enough to keep the link removal part small (see Fig. 4b and third row of Fig. 7).

So far the selection of bait nodes in the spoke link rearrangement has not been specified. In the yeast data
[4], the bait proteins are of course known and make up approximately a quarter of all listed protein nodes. In
general they have a larger degree than the overall average. Their degree distribution pbaitðkÞ is different from
the observed overall degree distribution pðkÞ, but can be mapped onto the latter via

pbaitðkÞ�kapk (2)

with a � 0:3. This indicates that a bait node i with degree ki might be picked from the model network with the
preferential bias

PbaitðkiÞ ¼
ka

iPN
j¼1 ka

j

. (3)

Since the observed degree distribution pk entering (2) is most likely not equal to the unknown true one, we will
discuss probabilistic bait selection with a ¼ 0 and 1 in the following.

The combination of the biased bait selection (3) and the spoke link rearrangement process are applied to the
network structure obtained with the gene-duplication-and-mutation model of Ref. [12]. Again, model
parameters are taken to match the yeast data, i.e., N ¼ 4687, d ¼ 0:58 and p ¼ 0:1. The rearrangement
strength n ¼ DL=L counts the relative number of bait selections implying link rearrangement or removal.

Since link removal is included in the spoke link rearrangement, the average degree decreases with increasing
n from its initial value hki ¼ 6:47. For the already very large rearrangement strength n ¼ 0:8 we arrive at the
slightly reduced values hki ¼ 6:40 and 5:97 for a ¼ 0 and 1, respectively. Note also, that the giant component
of the network does not change with n and remains at its initial value Ngc ¼ N. Both subprocesses of the spoke
link rearrangement always keep the three involved nodes connected to the overall network. This observation
together with the decreasing average degree would imply, that for a fair comparison between the yeast data
and the spoke-link-rearranged model a reparametrization of the model parameter d is required to start with an
initially denser network. Since the reduction of the average degree remains rather small for modest, data-
relevant rearrangement strengths, we abandon to do so.

The first row of Fig. 7 shows the dependence of the degree distribution on the rearrangement strength n. For
a ¼ 0 the probability to find low- and high-degree nodes decreases with increasing n. Already for small
0pnp0:5 the deviations to the initial degree distribution are noticeable. For very large n the degree
distribution appears to converge towards a Poissonian. For a ¼ 1 the outcome is different. For small n the
deviations to the initial degree distribution are barely noticeable, leading to a curve collapse in good
approximation. Even for large n ¼ 5 the resulting pk is still close by.

Analytical insight into these findings can be obtained from the following rate equation:

2

hki

dpkðnÞ
dn
¼ ð1� dk1Þ

ðk � 1Þa

hka
i

pk�1ðnÞ � ð1� dk0Þ
ka

hka
i

pkðnÞ

þ ð1� dk0Þ
k þ 1

hki
pkþ1ðnÞ � ð1� dk1Þ

k

hki
pkðnÞ. ð4Þ



ARTICLE IN PRESS

1

0.1

0.01

0.001

0.0001

0.00001
 1  10  100

p(
k)

k

yeast
ν=0 

 ν=0.1
ν=0.3 
 ν=0.5
ν=0.7 

 
analytical

1

0.1

0.01

0.001

0.0001

0.00001
 1  10  100

p(
k)

k

0.1

0.01

0.001

0.0001

0.000010.00001
 10  100

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 10  20  30  40  50  60  70  80  90  100

<
k n

gb
 | 

k>

k

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 10  20  30  40  50  60  70  80  90  100
k

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 10  20  30  40  50  60  70  80  90  100

C
(k

)

<
k n

gb
 | 

k>
C

(k
)

k

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 10  20  30  40  50  60  70  80  90  100
k

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

yeast  =0  =0.1  =0.3  =0.5  =0.7
 0

 100000

 200000

 300000

 400000

 500000

 600000

re
la

tiv
e 

m
ot

if
 f

re
qu

en
ce

s

to
ta

l n
um

be
r 

of
 m

ot
if

s

 pent5
 pent4

 pent3b
 pent3a
 pent2b
 pent2a
 pent1
 pent
 sqr2
 sqr1

 sqr
 tri

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

yeast  
 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

re
la

tiv
e 

m
ot

if
 f

re
qu

en
ce

s

to
ta

l n
um

be
r 

of
 m

ot
if

s

 pent5
 pent4

 pent3b
 pent3a
 pent2b
 pent2a
 pent1

 pent
 sqr2
 sqr1
 sqr
 tri

ν=5

ν ν ν ν ν  =0  =0.1  =0.3  =0.5  =0.7ν ν ν ν ν

yeast
ν=0 

ν=0.1
ν=0.3 
 ν=0.5
ν=0.7 

analytical
ν=5

yeast
ν=0 

ν=0.1
ν=0.3 
 ν=0.5
ν=0.7 

yeast
ν=0 

ν=0.1
ν=0.3 
 ν=0.5
ν=0.7 

yeast
ν=0

ν=0.1
ν=0.3 
 ν=0.5
ν=0.7 

yeast
ν=0

ν=0.1
ν=0.3 
 ν=0.5
ν=0.7 

M. Kuhnt et al. / Physica A 373 (2007) 759–769766



ARTICLE IN PRESS
M. Kuhnt et al. / Physica A 373 (2007) 759–769 767
The first two terms on the right-hand side represent the gain and loss term of the selected bait, which increases
its degree by one. The third and fourth term describe the first neighbor of the bait, which looses a link. Consult
again Fig. 6a. The spoke link removal (see Fig. 6b) has been neglected in (4). Furthermore, also degree
correlations have been discarded.

For the case a ¼ 0 the stationary solution of (4) is found to be the modified Poissonian

pk ¼

hkik

k!

1

ehki � 1
ðkX1Þ;

0 ðk ¼ 0Þ;

8<
: (5)

where p0 ¼ 0 is required from Ngc ¼ N for all n. This confirms the simulational finding of Fig. 7a for very large
n. – For a ¼ 1, pk�k�1 represents the nonnormalizable stationary solution of the rate equation. However, due
to the finiteness of the network a cutoff kc may be introduced, leading to

pk ¼
ak�1e�k=kc ðkX1Þ;

0 ðk ¼ 0Þ:

(
(6)

With parameters a ¼ 0:35 and kc ¼ 18 this solution is also illustrated in Fig. 7b and its inset. It agrees nicely
with pkðn ¼ 5Þ obtained from the simulations.

The degree correlation in the form hkngbjki is illustrated in the second row of Fig. 7. In case of a ¼ 0 and
especially for very small degrees, the average neighbor degree rapidly decreases with increasing rearrangement
strength. Its initial disassortative character is turned into a randomized one, which is reflected in the k-
independence. The average neighbor degree associated with a ¼ 1 does show a similar, but weaker dependence
on the rearrangement strength.

The third row of Fig. 7 focuses on the degree-dependent cluster coefficient. Not much happens for a ¼ 0 at
modest rearrangement strengths np0:7, except for very low degrees, where the cluster coefficient decreases as
k! 0. This behavior is also observed in the yeast data. In case of the biased bait picking with a ¼ 1, the
cluster coefficient increases for all k as the rearrangement strength increases from n ¼ 0 to n � 0:3, only
then to decrease again for even larger n. At the turning point n � 0:3, the found degree-dependent cluster
coefficient almost matches its counterpart from the yeast data. The overall cluster coefficient declines
with increasing n ¼ 0:1; 0:3; 0:5; 0:7; 5 as hCi ¼ 0:14; 0:11; 0:08; 0:06; 0:002 for a ¼ 0 and as hCi ¼
0:20; 0:19; 0:16; 0:12; 0:008 for a ¼ 1. For very large rearrangement strengths it becomes very small.

The motifs of Fig. 5 are exemplified in the last row of Fig. 7. For a ¼ 0 their total number is a strictly
decreasing function with n. The case a ¼ 1 shows a different behavior. For n ¼ 0 to about n � 0:2 it is first an
increasing function and then becomes a decreasing function beyond this point. Compared to the yeast data,
the order of magnitude is right for both a-values. The relative frequency of the motif ‘sqr’ decreases with n.
Characteristic trends are also observed for other motifs, but it is difficult to provide a solid explanation for it.
Just by looking at the two subfigures, we have the impression that for the combination a ¼ 1, n � 0:3 the
distribution of relative motif frequencies comes closest to the yeast distribution.

We have arrived at a remarkable result: in comparison to the respective yeast-data counterparts, the degree
distribution resulting from the parameter combination a ¼ 1 and n � 0:3 of the spoke link rearrangement
perfectly matches, the found degree correlation is at least close, the degree-dependent cluster coefficient
matches close to perfect and also the distribution of relative motif frequencies comes very close. Compared to
the initial model at n ¼ 0, the agreement with data has improved.

Without showing, we have also looked at a combined application of spoke link rearrangement and random
link removal. Results turn out to be a mere superposition of those obtained independently in this and the
previous section.
Fig. 7. (Row 1) Degree distribution, (row 2) degree correlation, (row 3) degree-dependent cluster coefficient and (row 4) relative motif

frequencies for (left/right column) a ¼ 0=1 and various spoke link rearrangement strengths n. The parameters of the initial gene-

duplication-and-mutation model [12] have been set to N ¼ 4687, d ¼ 0:58 and p ¼ 0:1. The various distributions have been sampled from

50 independent network realizations. For comparison, respective distributions extracted from the yeast protein interaction database [4] are

also shown. The analytical degree distributions (5) and (6), which have been obtained in the large-n limit, are also illustrated in the left and

right part of the first row, respectively.
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4. Conclusion

Observed protein interaction networks are known to be corrupted by a large amount of false negative and
false positive links. This observational incompleteness impacts the analysis of network structure. We have
assumed the emergence of false negative links to be random and have modeled it with a random subnetwork
sampling like random link removal. Most of the false positive links arise due to an operationally defined link
assignment during measurements. The latter has been abstracted as a specific random (spoke) link
rearrangement process. The modeling of both forms of observational incompleteness reveals that the resulting
degree distributions either do not depend at all or only weakly on the applied link removal/rearrangement
strengths. Based on this curve collapse alone, no judgment can be made on the qualities of the underlying
gene-duplication-and-mutation network models and no biological interpretation should be given to respective
model parameters, like the mutation rate d.

For observables beyond degree distribution, like degree correlation, cluster coefficient and motif
frequencies, a dependence on the applied link removal/rearrangement strength is found. Whereas for random
link removal this dependence remains small, spoke link rearrangement appears to move these observables
closer to their counterparts extracted from the DIP database. This shows the importance to include
observational incompleteness into the comparison between network models and data. It should also be
included into any systematic identification of statistically significant network measures [25] and will gain more
interest, the more rigorous the analysis of relevant data becomes.
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