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Abstract

Background: The balance between maintenance of the stem cell state and terminal differentiation is influenced by the
cellular environment. The switching between these states has long been understood as a transition between attractor states
of a molecular network. Herein, stochastic fluctuations are either suppressed or can trigger the transition, but they do not
actually determine the attractor states.

Methodology/Principal Findings: We present a novel mathematical concept in which stem cell and progenitor population
dynamics are described as a probabilistic process that arises from cell proliferation and small fluctuations in the state of
differentiation. These state fluctuations reflect random transitions between different activation patterns of the underlying
regulatory network. Importantly, the associated noise amplitudes are state-dependent and set by the environment. Their
variability determines the attractor states, and thus actually governs population dynamics. This model quantitatively
reproduces the observed dynamics of differentiation and dedifferentiation in promyelocytic precursor cells.

Conclusions/Significance: Consequently, state-specific noise modulation by external signals can be instrumental in
controlling stem cell and progenitor population dynamics. We propose follow-up experiments for quantifying the
imprinting influence of the environment on cellular noise regulation.
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Introduction

A growing body of evidence indicates that noise is not generally

detrimental to biological systems but can be employed to generate

genotypic, phenotypic, and behavioral diversity [1–5]. In partic-

ular, noise-driven solutions are expected to prevail in cellular

adaptation to variable environments [6]. It has been proposed that

biological systems have built-in molecular devices for noise control

[7–12]. These mechanisms are of specific importance in

developing organisms [11,13]. This view is supported by

experimental findings demonstrating that noise is down-regulated

in embryonic stem cells [14,15] and that fluctuations of the

transcription factor Nanog predispose these cells towards differ-

entiation [16]. The results of the present study suggest that noise

regulation can be an effective strategy in stem cell differentiation.

Stem cells are characterized by their ability to self-maintain and

generate differentiated cell types and functional tissues. Moreover,

they show flexibility and reversibility in their use of these options

[17,18]. Populations derived from these cells, subsequently

denoted as ‘stem cell populations’, comprise stem cells, progen-

itors, and differentiated cells. Their population structure is strongly

influenced by environmental factors such as specific cell-cell

interactions [19], growth factor and oxygen supply [20], as well as

the geometry and mechanical properties of the local environment

[21–23]. Changing these factors results in either cell death or

adaptation within days [24–28]. Recently, progress has been made

in the modeling and understanding of these processes on different

levels of complexity [3,29–36].

Our previous studies on stem cell population dynamics focused

on the reversibility and stochasticity of cellular fate decisions

[37,38]. In the model of Roeder et al. [35,36,38] individual cells

gain and loose stem cell properties depending on whether they

localize inside or outside a specific niche environment, respective-

ly. Thus, the environment directs the cellular fate and the

reversibility of cell fate decisions is enabled by probabilistic

switches between different micro-environments. The model well

described several experimental data sets on the in vivo organization

of normal and malignant hematopoietic stem cell populations

[35,36,39]. However, even within homogeneous in vitro environ-

ments stem cells are capable of expanding and maintaining the

aforementioned stem cell populations. For modeling these systems

the present study expanded the ideas of Roeder et al. [35,36] by
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assuming that cells gain and loose stem cell properties according to

a probabilistic process whose state-specific amplitudes are set by

the environment. Within this approach cell fate decisions are

basically reversible. The assumed cell state fluctuations can be

hypothesized to be generated by intra- and extracellular noise

triggering random transitions between different regulatory net-

work activation patterns. This concept is in agreement with

experimental findings demonstrating that epigenetic gene silenc-

ing, known to be instrumental in cell differentiation and fate

control, has a strong stochastic component [40,41].

The regularity of biological development in spite of the

ubiquitous presence of noise has raised the concept of a ‘potential

energy landscape’ or ‘attractor landscape’ explaining cell differ-

entiation and phenotypic diversification in terms of non-linear

systems theory and non-equilibrium thermodynamics [22,42–44].

In this concept, cells visit their accessible states driven by

differences in potential energy and non-state-specific, so-called

additive noise. Potential minima constitute attractor states

corresponding to population density maxima in steady state.

The alternative concept put forward in the present study assumes

that noise is predominant in most cellular states. Its essence is that

the population density is determined by state-specific, so-called

multiplicative noise forming a ‘noise landscape’, with low noise

states representing the attractor states. Cells subjected to an

environment not matching their internal state are assumed to be

destabilized by a high noise amplitude. They subsequently adapt

to this environment by traveling towards low noise states [34].

Recently, we have studied biochemically induced differentiation

and dedifferentiation in promyelocytic precursor cells by measur-

ing the inducer dose-dependent dynamics of cell differentiation as

observed by the expression of a specific cell surface marker [27].

Results from our model agreed well with the experimental data,

thus demonstrating the utility of our alternative description. This

suggests that stem cell and progenitor population dynamics can be

effectively driven by state-specific noise, thereby providing a new

vista onto phenomena like stem cell maintenance, plasticity, and

environmental adaptation. We propose follow-up experiments for

quantifying environmental influence on cellular noise regulation.

Results

In the following paragraphs we describe our model and

illustrate its general behavior for different parameter settings.

Subsequently, the model is applied to a set of experimental data.

Model
The present study focuses on the degree of differentiation as the

basic cellular attribute of interest. It is defined as the loss of stem

cell properties and goes along with but is not identical to lineage

commitment. Cell differentiation is quantified by a variable a
taking values between zero (full stem cell potential) and one

(complete cell differentiation). Each value of a may stand for a set

of regulatory network activation patterns. The overabundance of

these patterns as seen in gene expression profiles [30] suggests the

use of a continuous variable for the degree of differentiation.

Physically, a depends on the abundance and sub-cellular

localization of proteins and RNAs, as well as other types of

signaling and metabolic molecules [45]. The a-dynamics of a

single cell can be modeled according to a one-dimensional

Langevin equation:

da

dt
~f að Þzg að Þj tð Þ, ð1Þ

with f(a) representing the deterministic part of the dynamics and

g(a)j(t) denoting the usual Gaussian white noise term (,j(t). = 0,

,j(t), j(t9). = d(t2t9)). In applying Equation (1) one may focus on

deterministically dominated (|f(a)|.g(a)) or noise modulation-

dominated (|f(a)|,g(a)) dynamics, both of which can give the

same equilibrium distribution of a-values when sampled over time.

In the following, we concentrate on noise modulation-dominated

dynamics. Carrying the predominance of noise to an extreme we

completely neglect any deterministic dynamics in our model

(f(a) = 0, corresponding to globally equivalent deterministic

potential energy states) and simulate stem cell differentiation as a

result of noise modulation alone.

In order to simulate population dynamics in terms of the

number of cells in state a we transfer the general ideas of the

Langevin approach Equation (1) to a classical population

dynamics model which is similar in structure to a master equation

for a composite Markov process [46,47]. The model assumes each

cell’s a-value to randomly fluctuate according to a state-specific

noise amplitude s(a). Starting from an initial value a a cell assumes

a new value a drawn from a Gaussian distribution p ajað Þ that is

centered around a and has standard deviation s(a) (see Methods).

The frequency of this random transfer is determined by the

randomization rate R(a) defining the number of random events per

time. We assume R(a) to increase linearly with the cell proliferation

rate r(a) accounting for cell division as a major source of

randomization [48]. Finally, the dynamics of the average number

of cells N(a) in state a is governed by the random transfer towards

and away from a, and by cell proliferation:

LN að Þ
Lt

~

ð1
0

p a ajð ÞR að ÞN að Þda{R að ÞN að Þzr að ÞN að Þ ð2Þ

with

p a ajð Þ!exp {
a{að Þ2

2s2 að Þ

 !
and R að Þ~R0zR1r að Þ: ð3Þ

As a consequence of experimental findings [49] we replaced the

proliferation term in Equation (2) by the cell cycle model of León

et al. [50] assuming cell cycle progression to be a multi-step

process (see Methods, Supporting Text S1, and Supporting

Figures S1 and S2; five cell cycle steps were used in all

simulations). Figure 1 illustrates the general principle of state-

specific (multiplicative) noise-driven dynamics. Each cell can gain

or loose stem cell properties in a random event. This makes cell

differentiation a reversible process in general. A stable stem cell

state or terminal differentiation can be introduced by assigning

zero noise levels to a = 0 or a = 1, respectively. Each cell will then

finally end up in the respective absorbing state. However, cell

proliferation is capable of sustaining a broad population

distribution irrespective of individual cell fates.

Basic assumptions
Figure 2 shows simplified noise amplitudes s(a) and prolifera-

tion rates r(a). The functional form of the noise amplitudes s(a) is

assumed to be determined by the environment. The stem cell

maintaining environments S1 and S2 stabilize stem cell-like states

with low a-values whereas the differentiation promoting environ-

ments D1 and D2 stabilize committed states with large values of a
by the assignment of low noise levels. The noise amplitudes are

assumed to be linear functions of a for simplicity. Stem cells and

Population Dynamics
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differentiated cells are generally believed to be mostly quiescent

whereas progenitors are proliferative. This is reflected by the bell-

shaped proliferation rates r(a) being zero at the interval boundaries

and assuming their maximum value rmax.0 halfway in between.

However, stem cells and differentiated cells can also be assumed to

proliferate in our model. As long as all proliferative states have a

positive noise amplitude an initial distribution of a-values evolves

towards a non-degenerate stationary distribution (see Discussion).

In the following, stem cell populations are charcterized in terms

of their numerically calculated relative frequencies

P aið Þ~N aið Þ
.P

j N aj

� �
with N(ai) denoting the number of cells

in the respective differentiation state interval centered at ai (see

Methods).

Environmental adaptation
Figure 3 shows the adaptation dynamics for two cell populations

being transferred from a stem cell maintaining environment S to a

differentiation promoting environment D. The timescale of the

equilibration processes is of the order of days, consistent with

experimental data (see below, [24–28]). In both cases, the S and D

environments fully stabilize pure stem cells (a = 0) and differenti-

ated cells (a = 1), respectively. However, in the S2 and D2

environments these states can hardly be accessed dynamically

because the associated cumulative sum of directed steps is too

small on average. This dynamical hindrance together with the

stronger stabilization of proliferative progenitor states results in

equilibrium distributions that are peaked at intermediate a-values.

Generally, extensive low noise domains can hardly be accessed

from outside these domains.

Randomization rate
The influence of the noise parameter R1 on the frequency

distribution of a-states is illustrated in the left panel of Figure 4 for

the S2 environment. A high value of R1 disperses the cells away from

the most proliferating states around the mid-interval towards the

noise-reduced states at low a-values. The effect of the background

noise parameter R0 is similar but without the state-specific

modulation by the proliferation rate r(a). It drives the cells into

the low-noise attractors when proliferation is down-regulated. This

is demonstrated in the right panel of Figure 4 for different values of

rmax. The equilibrium distribution of non-proliferating cells

(rmax = 0) would be a delta peak at a = 0. Conversely, in the absence

of noise the population would converge to a delta peak at a = 0.5

when starting from an equal distribution. In summary, randomi-

zation and proliferation act as antagonists in modulating the cell

state distribution, with proliferation enabling the maintenance of

subpopulations in environmentally unfavored states.

Cell differentiation
Recently, we studied the transition of HL60 promyelocytic

precursor cells to the neutrophil lineage after stimulation with the

inducer dimethyl sulfoxide (DMSO) by monitoring the differen-

tiation marker CD11b (Mac-1) using flow cytometry [27]. The

model was applied to two experimental series. In the first series,

cells were exposed to 0.75% DMSO for 7 days and monitored for

CD11b expression at day 1, 3, 5, and 7 of treatment (Figure 5). In

the second series, cells were exposed to DMSO concentrations of

0.0, 0.5, 0.7, 0.9, and 1.1%, respectively, with CD11b expression

being measured after 7 days of treatment (Figure 6). For modeling,

we mapped the logarithmic fluorescence intensities to the unit

interval and identified them with the differentiation state a. The

functional form of the noise amplitudes as depicted in the lower

Figure 1. Multiplicative noise-driven dynamics. Upper panel:
state-specific noise amplitude (standard deviation) s(a) of the Gaussian
conditional probability density function (cpdf) p ajað Þ assumed to be a
linear decreasing function of a. The pictogram shows a cell with a = 0.4
being scattered towards a = 0.2 and 0.6, respectively (upper row). The
subsequent scatter starting at a = 0.6 has a smaller range (lower row).
This results in an average rightward drift of the peak position of the
probability distribution of a-values P(a) (see also Methods). Lower panel:
Gaussian cpdf p a ajð Þ as a function of a for a~0:4 (left) and a~0:6
(right). The corresponding standard deviations are s(0.4) = 0.15 and
s(0.6) = 0.10.
doi:10.1371/journal.pone.0002922.g001

Figure 2. Noise amplitude s(a) (left) and proliferation rate r(a) (right) as a function of cell differentiation a. The noise amplitude is
shown for four idealized environments: i) two stem cell maintaining environments (S1 and S2) stabilizing stem cell states and ii) two differentiation
promoting environments (D1 and D2) stabilizing differentiated states. The proliferation rate is zero (quiescence) at the interval boundaries for pure
stem cells and differentiated cells, respectively, and assumes its highest values at intermediate a. The maximum proliferation rates rmax = 0.1, 0.2, and
1.0?ln2/d correspond to minimum cell cycle times of tmin = 10, 5, and 1 days, respectively. Note that for exponential growth N(t)/el ln2 t = 2lt = 2t/t.
doi:10.1371/journal.pone.0002922.g002
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panel of Figures 5 and 6, respectively, was designed to match the

experimental data and provide a proof of principle for our

approach (see Methods). The noise amplitude minima constitute

attractor states corresponding to the CD11b-low-expressing,

rather undifferentiated state (a = 0.4) and the CD11b-high-

expressing, rather differentiated state (a = 0.6), respectively. The

assumption of everywhere non-zero noise amplitudes implies

reversible (ergodic) a-dynamics in agreement with our experimen-

tal results (Figure 7) and the finding that certain HL60 sublines

have lost the irreversibility of terminal differentiation [25]. The

proliferation rate as shown in the lower panel of Figure 5 was

chosen to be a hat-like function of a implementing a proliferation

double-switch (off-on-off). Its width ensures that both the CD11b-

low and CD11b-high-expressing cells divide. This is consistent

with HL60 cells generally being very proliferative. Moreover, the

above assumptions results in the cell population peak positions

being largely independent of proliferation, in accordance with the

observation that proliferation does not substantially influence

HL60 cell differentiation [24,26,28]. Lowering of the proliferation

rate towards the interval boundaries is required in order to reduce

population density tails. This suggests that HL60 cells are almost

quiescent for low and high values of a. In addition to the above a-

dependent proliferation rate, we introduced an a-independent

apoptosis rate increasing linearly with time to account for the

experimentally observed decrease in population doubling rates

from 1.0 to 0.5/d for 0.0, 0.5, and 0.7% DMSO and from 1.0 to

0.2/d for 0.9 and 1.1% DMSO, respectively (unpublished data,

see also Methods). Alternatively, this decrease in proliferation

could result from an asymmetric proliferation rate showing a

pronounced proliferation maximum for undifferentiated cells

(a = 0.4). This assumption did, however, not lead to a satisfactory

model fit. Nevertheless, a minor asymmetry cannot be completely

excluded since small alterations in the proliferation rate can be

partly compensated by adjusting the model parameters and the

fluorescence data mapping to the unit interval. This weak

sensitivity with respect to the proliferation profile is a general

feature of our model. The model is most sensitive to the shape of

the noise profile at low noise amplitudes. The randomization rates

are important for setting the time scale of the differentiation

process.

The presented results demonstrate that our model is capable of

quantitatively reproducing both the dynamics of the induced

differentiation process (Figure 5) and the inducer dose dependence

of the respective equilibrated a-distributions (Figure 6) using

consistent parameter settings. The experimental data agree with

the notion of DMSO inducing an attractor state associated with

cell differentiation (a = 0.6) in a switch-like manner when raising its

concentration from 0.5 to 0.7% (Figure 6). An increase in DMSO

dosage beyond this point eliminates the original precursor cell

attractor (a = 0.4) in a more graduated fashion. The position of

Figure 3. Adaptation dynamics of a stem cell population after instantaneous switching from a stem cell maintaining environment S
to a differentiation promoting environment D. Left panel: S1 to D1. Right panel: S2 to D2. Snapshots are taken at the time of switching and 1, 3,
and 20 days, respectively, after switching. R0 = 0.3/d, R1 = 0.9, rmax = 1.0?ln2/d.
doi:10.1371/journal.pone.0002922.g003

Figure 4. Impact of the noise parameter R1 (left panel) and the maximum proliferation rate rmax (right panel) on the stationary
distributions for the S2 environment. A high value of R1 disperses the cells away from the central proliferation zone towards the more noise-
reduced states. A small cellular growth as expressed by low values of rmax lets noise dominate over proliferation even in the presence of a dynamic
hindrance in approaching the noise-reduced states (see text). The parameters are identical to those of Figure 3, except for R1 in the left panel and rmax

in the right panel. The equilibration period was generally 20 days. Systems with small noise amplitudes or low randomization rates may show slow
dynamics. For this reason, the equilibration period was set to 60 and 120 days for rmax = 0.2 and 0.1?ln2/d, respectively. The displayed distributions
were checked to be well equilibrated by solving the equilibration condition hN(a)/ht = 0 for N(a) using Broyden’s method [65].
doi:10.1371/journal.pone.0002922.g004
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both attractors neither depends on time nor on DMSO dosage

suggesting that DMSO activates a single noise reduction

mechanism.

Differentiation-dedifferentiation hysteresis
The experimental system exhibits hysteresis in that the final

distribution arrived at after 7 days of culture depends on the

distribution of the initial cell population. In Figure 7 the final

distribution at various DMSO doses is characterized by the

fraction of cells that show a high CD11b expression. This high

fraction is lower for the culture being initiated by untreated HL60

cells (forward direction) compared to HL60 cells previously treated

with a high DMSO dosage for 7 days (backward direction).

Stochastic systems, like the one presented here, generally evolve

towards unique equilibrium distributions but may exhibit a kinetic

hysteresis [47]. Figure 7 (right panel) shows the experimental and

simulated high fractions (a.0.55) demonstrating that for the same

parameter settings as in Figure 6 the kinetic hysteresis displayed by

our model is consistent with the experimental observations.

Population regeneration
In addition to the cell differentiation assays of the previous

paragraphs we performed population regeneration (restimulation)

experiments [27]. In a first experimental step cells were stimulated

with 0.8% DMSO for 7 days and FACS-sorted for cells with a low

CD11b expression. Subsequently, these CD11b-low-expressing

cells were restimulated with the same DMSO dosage for another 7

days. We simulated FACS-sorting by retaining the fraction of cells

with a#0.45 in the distributions obtained after 7 days of 0.75%

DMSO treatment corresponding to the results of Figure 5. The

system was then further evolved for 7 days using the same DMSO

dosage conditions (Figure 8, left panel). The right panel of Figure 8

displays the fraction of CD11b-high-expressing cells (high fraction,

a.0.45) during stimulation and restimulation. While the exper-

imental data of the primary stimulation agree quite well with the

model results the cellular response to restimulation is much faster

than predicted by our present one-dimensional model (priming

effect, see Discussion).

Discussion

Noise is ubiquitous in biological systems and must be controlled

to ensure reliable cell functioning, at least in higher multicellular

organisms that feature noise-sensitive processes like alternative

splicing and epigenetic regulation of gene expression. Noise

regulation is most economic if applied only to those cellular states

that are relevant under the prevailing environmental conditions.

Noise regulation is thus expected to depend on the match between

the internal state of a cell and its environment. In the present study

we introduced a simple few-parameter model of stem cell and

progenitor population dynamics that is explicitly based on noise

regulation. Applying this model to a recent unique data set

measuring various aspects of the dynamics and inducer dose

dependence of stimulated differentiation in promyelocytic precur-

sor cells [27] we demonstrate that our approach provides a

Figure 5. Differentiation dynamics. Fluorescence histograms of
CD11b expression in HL60 cells as obtained by flow cytometry at day 1,
3, 5, and 7 of treatment with 0.75% DMSO (upper panel). The
experimental data are shown together with the respective simulation
results. The model is first equilibrated for a noise amplitude specific for
DMSO-free conditions stabilizing CD11b-low-expressing, rather undif-
ferentiated states (lower panel, black curve, day 0). Subsequently, the

noise amplitude is instantaneously switched to the DMSO treatment
conditions stabilizing CD11b-high-expressing, rather differentiated
states (lower panel, orange curve, day 1–7). R0 = 0.6/d, R1 = 0.2,
rmax = 1.03?ln2/d. The relative magnitudes of R0 and R1 were chosen
in order to result in similar differentiation dynamics with and without
proliferation as is experimentally suggested for certain HL60 sublines
[24,26,28].
doi:10.1371/journal.pone.0002922.g005
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consistent description of these data including differentiation-

dedifferentiation hysteresis as well as population regeneration.

Our results suggest that stem cell and progenitor population

dynamics can be effectively driven by state-specific noise. These

findings provide new insights into phenomena like stem cell

maintenance, plasticity, and environmental adaptation.

The model assumes that cell population dynamics result from

random fluctuations of the state of differentiation a. In the present

study we simply identified a with the logarithmic CD11b marker

expression. More generally, measuring a number of stem cell,

differentiation or lineage markers, like promylelocytic or granu-

locyte markers in hematopoiesis, would enable a definition of the

state of differentiation as a multivariate function of the measured

markers. Clearly, changes in a correspond to changes in the

combined marker expression, and thus to transitions between

complex regulatory network activation patterns. In our present

model these transitions are understood as random fluctuations

caused by molecular level noise inherent in biological systems.

Biological noise was proposed to arise from chromatin remodeling,

promoter activation, and transcription [11,31,51–55]. Moreover,

the spatial variation of molecular concentrations as well as

asymmetric partitioning of proteins during cell division can be

considered further sources of noise [45,48,56]. It has been

proposed that biological systems have built-in molecular devices

for noise control [7–12]. These control mechanisms are of specific

importance in developing organisms with the Wnt signaling

pathway as a prominent example [11,13]. Further support comes

from recent experimental findings demonstrating that noise is

down-regulated in embryonic stem cells [14,15]. The present

modeling concept assumes that state-specific noise regulation in

response to environmental signals serves as a selector of certain

differentiation states representing specific functional cellular

programs. This noise-driven selection scheme appears to be an

economic general purpose mechanism for environmental adapta-

tion and diversification since only the selected cell states need to be

noise-reduced. Stem cell differentiation in higher organisms is

controlled by epigenetic phenomena. Prominent mediators of

epigenetic reprogramming are Polycomb Group proteins [57].

Their expression level has been shown to be modulated by

environmental inputs, thus linking extracellular cues to repro-

gramming of the epigenome [58]. Together with the fact that

epigenetic gene silencing has a strong stochastic component

[40,41] this suggests environmentally regulated epigenetic pro-

cesses as effectors of noise regulation during differentiation.

The results of the present study demonstrate the capability of

our model to explain the dynamics of differentiation marker

expression in response to variable doses of soluble inducing factors

as well as the regeneration of cell populations from subpopula-

tions. Population structure and dynamics were most sensitive to

the shape of the noise profile at low noise amplitudes. Measured

proliferation rates were consistently described. Chang et al. [27]

observed that the regeneration from subpopulations under DMSO

treatment was faster for pre-stimulated cells compared to native

Figure 6. Inducer dose dependence of equilibrated distribu-
tions. Fluorescence histograms of CD11b expression in HL60 cells at
day 7 of exposure to DMSO doses of 0.0, 0.5, 0.7, 0.9, and 1.1%,
respectively (upper panel). The individual noise amplitudes used in the
model are shown in the respective insets. They are also pooled in the
lower panel (same color). Initially, the model is equilibrated for the

environment associated with 0.0% DMSO and low CD11b expression
(uppermost curve). After switching to the respective non-zero DMSO
conditions that promote high CD11b expression the simulation is
continued for a period of 7 days. The DMSO-dependent attractor at
a = 0.6 is introduced in a switch-like fashion when the DMSO
concentration is raised from 0.5 to 0.7%. The original undifferentiated
cell attractor at a = 0.4 is more gradually eliminated in the higher
concentration range of DMSO. R0 = 0.7/d, R1 = 0.25, proliferation rate as
in Figure 5. The ordinate break cuts the uppermost curve at half peak
height.
doi:10.1371/journal.pone.0002922.g006
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cells with the same marker expression. Our present one-

dimensional model cannot describe these priming effects, thus

calling for model extensions that account for multi-stable and

multi-step differentiation processes in a multidimensional system as

suggested in [27]. Recent results suggest that linage choice in

hematopoietic progenitor cells is indeed a multi-step process that is

noise controlled [59]. The same work also demonstrates

regeneration of whole populations from various subpopulations

in hematopoietic systems. This supports the assumption of

reversible cell differentiation underlying the present study.

Simulating cell differentiation as a result of noise modulation

alone is another abstraction specific to our model. In general, the

deterministic part of the dynamics (f(a) in the Langevin

equation (1)) will be different from zero. As a consequence,

deterministic system behavior, as commonly modeled by chemical

rate equations, will prevail in low noise states enabling more

reliable cell functioning. This implication was already noted for

models with constant noise amplitude [43].

The present model has been developed in particular for

simulating the dynamics of stem cell and progenitor adaptation

to different environments. Stem cell niches are assumed to reduce

state fluctuations of stem cell-like states. Thus, the progeny of stem

cells remains stem cell-like. This mimics symmetric cell division

maintaining or expanding the stem cell pool. Transfer of stem cell

populations into environments that promote differentiation leads

to destabilization of stem cell-like states. This process can be

understood as stem cell activation. In direct analogy to the

destabilizing effect of noise assumed in the present study,

fluctuations of Nanog, a potent stem cell regulator, were recently

suggested to open temporal windows for the initiation of

differentiation processes [16]. The progeny of cells in high-

fluctuation states quickly diverges. This mimics asymmetric cell

division. Such destabilized cells adapt to their environment by

traveling towards low-fluctuation states. For near zero noise

amplitudes the cells become trapped in these states for their life

time rendering this adaptation process effectively irreversible.

According to our model high-fluctuation states can be kept

populated by cell proliferation. Vice versa, a population-wide

proliferation stop would accumulate a maximum number of cells

in low-noise states. Due to the prevalence of deterministic

dynamics over noise in these states, the accumulated cells should

function more predictably. However, the resulting homogeneous

cell population of highly specialized individuals will in general be

less flexible for adaptation to unexpected environmental changes

[2]. Repeated exposure to the same environmental changes could

have resulted in the evolution of efficient deterministic adaptation

mechanisms that do not rely on noise regulation. Such

mechanisms are most likely found in simple organisms like the

Figure 8. Population regeneration. First, cell population dynamics were simulated for a dosage of 0.75% DMSO and a period of 7 days (compare
Figure 5) starting from an untreated cell distribution additionally sorted for low CD11b expression (a#0.45, corresponding to a relative fluorescence
intensity of 423/1024). Subsequently, the final distribution obtained after 7 days of culture was also sorted for CD11b-low-expressing cells and
exposed to the same DMSO dosage for another 7 days (left panel, snapshots at 0, 1, 3, 5, and 7 days). The right panel shows the time course of the
CD11b-high-expressing fraction (high fraction, a.0.45) for the primary stimulation (circles) and the restimulation (squares). Experimental data, as
adapted from [27], relate to 0.8% DMSO and are represented by open symbols. Model results are shown as filled symbols. The model restimulation
curve (not shown) is quasi-identical to the stimulation curve.
doi:10.1371/journal.pone.0002922.g008

Figure 7. Differentiation-dedifferentiation hysteresis. The left panel illustrates the fraction of CD11b-high-expressing cells (high fraction, filled
area, a.0.55, corresponding to a relative fluorescence intensity of 645/1024) after 7 days of culture at various DMSO concentrations. The cultures
were initiated by untreated HL60 cells. The right panel compares these high fractions (forward direction, fwd, circles) with those for initiation by HL60
cells previously stimulated with DMSO for 7 days (backward direction, bwd, squares). Experimental data, as adapted from [27], are represented by
open symbols, model results by filled symbols. DMSO doses used in the pre-culture of the initiating cells: 0% forward direction, 1.1%(model) and
1.25%(experimental) backward direction. Model parameters as in Figure 6.
doi:10.1371/journal.pone.0002922.g007
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lactose and tryptophan utilization networks in E.coli and other

bacteria [60–62]. However, Kashiwagi et al. [34] showed that

E.coli cells equipped with a synthetic bistable gene switch actively

select the attractor state that allows survival in one of two

alternative nutritional environments. Through promoter swap

experiments they demonstrated that this selection mechanism is

not hard-wired in the E.coli genome, and thus must be non-

deterministic and driven by gene expression noise.

The transfer of cells from a stem cell niche to an in vitro culture

constitutes a drastic change in environmental conditions leading to

a complete reorganization of the stem cell population. Similar

effects are expected for the recruitment of in vivo stem cells to

implanted biomedical scaffolds. A better understanding of such

adaptation processes will be essential for the optimization of stem

cell culture protocols and the design of injectable biomaterials

[22,63,64].

Subsequent to the present studies, follow-up experiments

addressing the imprinting influence of the environment on cellular

noise regulation and the reversibility of stem cell development

must effectively quantify noise during cellular differentiation and

dedifferentiation. Future projects should thus analyze the fluctu-

ations of stem cell marker expression in single cells while

measuring their proliferation activity at the same time. This can

be achieved by automated long-term cell tracking which enables

the reconstruction of cellular pedigrees in high-throughput studies.

Such studies are expected to uncover well defined cellular states

with significantly reduced or amplified noise levels. Moreover, they

are prerequisite in the detection of signaling pathways acting as

noise control devices.

In conclusion, we suggest that noise regulation can be effective

in cellular development and environmental adaptation. It is

expected to be relevant especially in higher multicellular organisms

that comprise exposed noise-sensitive phenomena. Decoding the

‘noise landscape’ will be essential for the understanding of cell fate

control and development.

Methods

Experimental Methods
Cell Culture and Differentiation. HL-60 cells (ATCC)

were cultured in IMDM medium (ATCC) supplemented with

10% fetal bovine serum and 1% glutamine plus penicillin and

streptomycin. Cells of passage 7 (after receipt from ATCC) at a

density of 1.0?106 cells/ml and growing at a basal rate of 1.3–1.7

day 21 were treated with variable concentrations of DMSO

(Sigma) ranging from 0.3% to 1.25% (v/v) to induce

differentiation. At each time point, cells were harvested from the

suspension culture, pelleted, and processed for flow cytometry

analysis.

Flow cytometry and Fluorescence Activated Cell Sorting

(FACS). For the Guava- PCA system (see below) 200,000 cells

were pelleted and incubated in 7 ml of CD11b/MAC-I R-PE

conjugated fluorescence antibody (BD Pharmingen) on ice for

30 min, washed with ice-cold 1% fetal calf serum/PBS/0.01%

NaN3 (NaN3 is left out in sorting experiments), and resuspended in

the same buffer at 106 cells/ml density for analysis. For

fluorescence-activated cell sorting, staining was scaled up 10-fold

to 50 ml of CD11b/MAC-I R-PE conjugated fluorescence

antibody (BD Pharmingen) per 106 cells and cells were

resuspended at 8–10?106 cells/ml. Flow cytometry was

performed on a Guava-PCA microfluidic-based flow cytometer

(GuavaTechnologies, Inc). Fluorescence activated cell sorting was

performed with either a Becton Dickinson FACSVantage (Becton

Dickinson) or a Becton Dickinson FACSAria (Becton Dickinson)

flow cytometer. Data analysis was done with either CytoSoftTM

2.1.1. (GuavaTechnologies, Inc) or WinMDI software. For cell

sorting, starting cell number ranged between 40–80?106 cells, and

cells were sorted into ice-cold medium for a maximum of 3 hours.

Gates for sorting the CD11b-low-expressing subpopulation in the

0.8% DMSO-treated samples were set relative to an untreated,

native population. The latter was also mock sorted and processed

in exactly the same way as the former to control for the effects of

FACS sorting on cellular expression of CD11b. To remove the

staining antibody before reculturing, pelleted cells were suspended

in pH. 2.25 MES (morpholinoethanesulfonic acid)/Tris buffer for

30 s. A 10-fold volume of pH 7.4 PBS was immediately added for

neutralization and the cells were pelleted and resuspended in

culture medium. After antibody removal the cells had fluorescence

signal intensities on par with unstained HL60 cells and exhibited

normal viability for future immunofluorescence staining. For

detailed Methods see [27].

Theoretical Methods
The present modeling approach is based on the dynamics of

stem cell populations stratified with respect to cell differentiation.

Cell differentiation is defined through the variable aM[0,1] with

a = 0 for pure stem cells and a = 1 for fully differentiated cells. The

model assumes cell differentiation to be subject to random changes

defined by the conditional probability density function (cpdf)

p a ajð Þ for a given a and the randomization rate R(a) quantifying

the number of random events per time (Equations (2) and (3)). The

cpdf p a ajð Þ is assumed to be Gaussian centered at a with standard

deviation (noise amplitude) s(a). It is renormalized to unity for

each a to account for the truncation to the interval [0,1]. The

noise amplitude s að Þ~
P

i qi að ÞBi að Þ is specified as a sum of

piecewise linear or quadratic functions qi(a) = u0+u1(a2aiq)

+u2(a2aiq)
2 localized by tanh-type radial basis functions

Bi að Þ~bi að Þ
.P

j bj að Þ with bi(a) = 1/2 tanh[(ri2a+aib)/si]+1/2

tanh[(ri+a2aib)/si], in which aiq and aib denote the offset of the

polynomial and the radial base, respectively, whereas ri specifies

the characteristic radius, and si the transfer width of the base. Cells

are assumed to proliferate according to the growth rate r(a) and the

time-dependent apoptosis rate a(t) = a1 t irrespective of generation.

The two-dimensional rate equation for the average number of cells

is numerically solved by the explicit Euler Forward Method on a

2D-grid of discrete differentiation values ai, i = 1,…,na, and

generation-specific cell cycle phases k = 1,…,np according to

DM ai,kð Þ
Dt

~
Xna

j~1

p ai aj j

� �
R aj

� �
M aj ,k
� �

{R aið ÞM ai,kð Þ

zr aið Þnc p kð ÞM ai,k{1ð Þ{Q kð ÞM ai,kð Þ½ �{a tð ÞM ai,kð Þ

ð4Þ

in which nc denotes the number of cell cycle phases per generation,

r(k) = 2 if k;1(mod nc) to account for cell doubling and r(k) = 1

otherwise. Furthermore, Q(k) = 0 if k = np and Q(k) = 1 otherwise. It

is understood that M(ai, k21) = 0 for k = 1. The cell cycle terms in

the second row of Equation (4) implement the continuous cell

cycle model of León et al. [50] without G0 phase arrest. The

number of cells in generation l is calculated by summing over its

cell cycle phases N ai,lð Þ~
Plnc

k~ l{1ð Þncz1 M ai,kð Þ. The dynamics

of the marginal relative frequencies associated with cell differen-

tiation can easily be derived from P aið Þ~
P

l N ai,lð Þ
.

P
j,l N aj ,l

� �
.

Truncation of the cpdf p a ajð Þ to the unit interval generally

results in non-symmetric scattering and thus in a non-vanishing
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drift term A(a) as defined for the Fokker-Planck equation [47].

This term mimics a deterministic dynamic component corre-

sponding to f(a) in the Langevin equation (1). The results of the

present study were checked against either using the numerically

determined non-zero A(a) or setting A(a) = 0 in the equilibrated

distributions. We found no notable difference except for the S1 to

D1 transition shown in Figure 3, for which, however, also the

Fokker-Planck approximation to the master equation breaks

down.

Supporting Information

Text S1

Found at: doi:10.1371/journal.pone.0002922.s001 (0.03 MB

DOC)

Figure S1 Cell generation distribution. Experimental data (large

open circles) as adapted from Holtz et al. [1] and model results

obtained by assuming a number of nc = 1 (filled squares) and 5

(filled circles) cell cycle steps in the proliferation model of León et

al. [2]. Assuming only one cell cycle step corresponding to

Equation (2) of the MM is not in agreement with the experimental

data. Model parameters as in Figure 3, left panel, of the MM

except for rmax = 1.16ln2/d. CD34+/CD38- FACS-sorting was

simulated by retaining cells with a#0.17 resulting in a percentage

of 23% primitive progenitors. The distribution obtained by

retaining all cells in the simulation (open circles) illustrates that

the primitive progenitor fraction is initially depleted for fast

proliferating cells.

Found at: doi:10.1371/journal.pone.0002922.s002 (0.37 MB TIF)

Figure S2 Number of cell cycle steps. Equilibrium distributions

of a-values corresponding to Figure 4, right panel, of the MM for a

number of cell cycle steps nc = 1, 2, 5, and 20. The larger the

number of cell cycle steps nc the smaller the effective proliferation

rate (compare also Figure S1) driving the cells into the most

attractive state at a= 0. The effect of nc on the a-dynamics

saturates for high values of nc and is smaller for higher

proliferation rates.

Found at: doi:10.1371/journal.pone.0002922.s003 (0.29 MB TIF)
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