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The intestinal epithelium is one of the most rapidly regenerating tissues in mammals.
Cell production takes place in the intestinal crypts which contain about 250 cells.
Only a minority of 1-60 proliferating cells are able to maintain a crypt over a long
period of time. However, so far attempts to identify these stem cells were unsuccess-
ful. Therefore, little is known about their cellular growth and selfmaintenance
properties. On the other hand, the crypts appear to exhibit a life cycle which starts
by fission of existing crypts and ends by fission or extinction. Data on these processes
have recently become available. Here, we demonstrate how these data on the life
cycle of the macroscopic crypt structure can be used to derive a quantitative model
of the microscopic process of stem cell growth.

The model assumptions are: (1) stem cells undergo a time independent supra-
critical Markovian branching process (Galton-Watson process); (2) a crypt divides
if the number of stem cells exceeds a given threshold and the stem cells are distributed
to both daughter crypts according to binomial statistics; (3) the size of the crypt is
proportional to the stem cell number. This model combining two different stochastic
branching processes describes a new class of processes whose stationary stability
and asymptotic behavior are examined. This model should be applicable to various
growth processes with formation of subunits (e.g. population growth with formation
of colonies in biology, ecology and sociology). Comparison with crypt data shows
that intestinal stem cells have a probability of over 0-8 of dividing asymmetrically
and that the threshold number should be 8 or larger.

Introduction

The intestinal epithelium is one of the most rapidly regenerating tissues in mammals.
It is a one cell layer thick arrangement of cells covering the inner lining of the
gastro-intestinal system. Cell production takes place in the intestinal crypts which
are imbedded in the wall of the gut. From here cells migrate onto the surface of
the villi which protrude into the lumen of the gut. Here cells are finally discarded
after having performed their function of absorbing and digesting food (for details
see Potten & Hendry, 1983; Wright & Alison, 1984). :

Crypts in the small intestine of mice contain about 250 cells of which 150 are
proliferating. Only a minority of proliferating cells are able to maintain the epi-
thelium over a long period of time. For these cells the concept of selfmaintaining
intestinal stem cells was postulated (Cairnie et al, 1965; Potten & Hendry, 1983).
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So far however, attempts to identify and count the stem cells on the grounds of
histology or genetics were unsuccessful. Little is known about the growth properties
of the cells. Their number may range between 1 and 60 (Potten, 1990).

Crypts are dynamic structures. Their life cycle starts by a longitudinal fission of
existing crypts (Cairnie & Millen, 1975) and ends by fission or extinction. This
process is schematically displayed in Figure 1. On the left a section of a normal
crypt is shown. Crypt doubling occurs by a longitudinal fission of a crypt starting
at the bottom (the presumable stem cell location) and continuing upwards (middle).
Sections displaying this morphologically can be seen (Cairnie & Millen, 1975). At
the end of this process two independent crypts are generated. Crypts disappear by
shrinking in length and circumference until they are integrated into the surface
lining (right) (Potten, 1990). Neither do they leave a sign of their former existance
nor can they reliably be identified in the process of extinction. It is assumed that
this extinction occurs only if a crypt has lost all selfmaintaining stem cells. It is
believed that a crypt can stay alive as long as it has at least one active stem cell
(Potten & Hendry, 1983; Potten et al, 1987; Potten, 1990).

Data on the life cycle of crypts in the normal unperturbed circumstances have
recently become available. They are summarized in Table 1.

Scheme of birth and death of crypts

Normal Crypts in fission Dying crypt
crypt :

FiG. 1. Schematic representation of crypts in various states of their life cycle (longitudinal section).
(a), Normal crypt; (b) and (c), crypts in fission; (d), dying crypt.

In a previous model of the steady-state we showed that the spatial and functional
organization of the crypt can be explained if one assumes that'the number of mature
progeny produced per stem cell and time unit is_;,_constant (Loeffler et al., 1986;
Potten & Loeffler, 1987). This implies a proportionality of crypt size and stem cell
number. Based on this assumption crypt size distributions have recently been
measured by Totafurno et al. (1987). Figure 2 gives a schematic reproduction of
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TABLE 1

Data on the life cycle of murine intestinal crypts

Parameter Value
Doubling time of crypts (T) 100 dayt

700 dayi
Fission rate (¢) 0-006-0-0013 day™'+§
Extinction rate Q) «0-001 day™ 't
Duration of stem cell cycle time ~1day

+ Derived from data obtained by Totafurno et al. (1987).

% Potten (1989, personal communication) found that the number of crypts in the small
intestine of mice approximately doubles between week 11 and week 111 of age. In this
period 1:5% of all crypts were found in the fission process.

§ Obtained by the relation: incidence = prevalence of crypts in fission/ duration of fission.
The data are: Totafurno et al. (1987): 0-006 (experiment 1), 0:0048 (experiment 2); Potten
(1989, personal communication): 0-0013.

Distribution of crypt volumes
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F1G. 2. Crypt size distribution as obtained by Totafurno et al. (1987) (modified reproduction). n =291;
Cy, ~0-25.
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their findings. The distribution shows a coefficient of variation of about 0-25. The
mode of the distribution is about half of the maximum. Small crypts are very rare.
In addition bigger crypts are more frequently found in the fission process. Similar
results were found by Potten (unpublished data) when he measured the circumfer-
ence of crypts in transverse sections. He also found a coefficient of variation of
about 0-25.
The basic data can be summarized as follows:
(1) The number of crypts increases continuously with age with a doubling time
of several hundred days;
(2) The crypt fission rate can be estimated to be between 0-0013 and 0-006 day™';
(3) The crypt extinction rate can be estimated to be considerably lower than
0-001 day™";
(4) Small crypts are very rare and the mode of the crypt size distribution is about
3 of the size of the biggest crypts.

Objective of the Modelling

It is the objective of this paper to demonstrate a model that can quantitatively
explain the life cycle of crypts and the size distributions on the basis of growth
characteristics of individual stem cells.

This implies that one can relate the dynamics of the macroscopic crypt structure
to the microscopic cellular process of stem cell selfmaintainance and differentiation.
At each division a stem cell divides into two daughter cells which can become stem
cells again or differentiating cells (with mandatory maturation after a fixed number
of transient cell divisions). It will be assumed that out of one stem cell either none
(with probability q) or one (r) or both (p) of the daughter cells can become stem
cells. It is assumed that the decision between these options is random and indepen-
dent of the previous development (Markov property) and the probabilities are
constant in time (homogeneity property). With this concept of the cellular growth
process in mind it is the particular aim of the modelling to (1) give an average
stationary probability distribution of stem cells per crypt, (2) to calculate the total
number of crypts, and (3) to calculate the stationary extinction and fission rates in
terms of probabilities. This requires the investigation of a new type of stochastic

branching model which takes the formation and disappearance of the crypts into

account. Rather than looking merely at the population of cells one has to consider
also the population of subunits (crypts).

Remarks on Properties of Conventional Galton—Watson Processes

Stochastic branching processes have found wide application in biology (Jagers,
1975). One of the first applications of stochastic processes to the analysis of stem
cell systems was given by Vogel et al (1968, 1969). They investigated the
haemopoietic stem cells and assumed a Galton-Watson Process (GWP) with p, g
and r being independent of the size and the age of the system. Let m: = 2p+r denote
the mean offspring of one cell per generation and S, the number of cells at generation
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n (discrete integer time steps). Then the expected value E(S,) grows exponentially
E(S,)=S,.m", (1a)

and one can calculate the probability for the extinction of the entire system. The
asymptotic extinction probability at some time in the future is

Q= P(lim S,=0)=min[1, (¢/p)*]. (1b)

These formulae indicate that the system dies out with certainty if p<gq i.e. m=1
(subcritical). Only for p> g(m>1) is there a finite probability for the system to
survive in which case it grows exponentially (supracritical). A stable steady-state
does not exist.

This lack of stability led to the development of controlled GWPs in which the
number of offsprings depends in a convergent fashion (for n > o) on the size S, of
the system (Kesten & Stigum, 1967, Fujimagari, 1976, 1980; Hopfner, 19854, b;
1986; Klebaner, 1983, 19844, b, 1985). However, again under fairly general assump-
tions it was shown that no stable steady-state could be maintained. The systems
either die out or grow (at least logistically) (Klebaner, 1984). With respect to our
particular question these results are interesting, because they imply that biological
systems operating on such simple rules must grow supracritically at the cellular
level in order to survive. As the data indicate this is the case for the intestine.

All these models, however, cannot be readily applied to our problem for two
reasons. First, they do not take segregation of the system into subunits into account.
Second, they are considering the total population (including all individuals that
have ever existed dead and alive) while in our biological system one has to look at
conditional probabilities, i.e. we have to look only at crypts which are alive at any
given moment. Therefore, the previous concepts cannot be applied.

A Model of a GWP with Threshold Dependent Segregation into Subunits

The following model assumptions are introduced:

Assumption 1 (Cell division): ,

If the number S of stem cells in a crypt is below a critical value S, stem cells
grow according to a supracritical time independent Markov process of the Galton-
Watson type with probabilities p, r, and g producing 2, 1, and 0 new stem cells
(p+rqg+r=1). ‘

Assumption 2 (Crypt division):
If the number S of stem cells in a crypt exceeds S; two new crypts are formed and
the stem cells are distributed according to binomial statistics with a probability v
[i.e. B(v, S)]. With respect to the old crypt this is equivalent with the view that
either 0 or 1 stem cells remain. (For practical reasons we will assume v =3 later on.)
These two assumptions enable us to write down: the transitiqn probability P;(v)
for a crypt of size S, =i in generation n to one of:size S,,, =j in generation n+1.
It is given by '

I)ij(v):P(Sn+l=j1Sn=i) : (28)
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P¥(v) for i>0,j=0
=<0 for i=0,>0 (2b)
1 for i=0,j=0,

where P}(v) stands for the i-fold convolution of {p,(v)} at point j and

(q for i<S; and k=0
r for i<S, and k=1
J D for i<S, and k=2
) = . 2c
Pu(v) 1-v for i=S, and k=0 (2¢)
v for i=S; and k=1
\ 0 else

In order to obtain experimentally meaningful results one has to consider an addi-
tional assumption which leads to conditional probabilities.

Assumption 3 ( Extinction of subunits): _
Crypts with zero stem cells are considered extinct (absorbing state). They are
eliminated from consideration.

Based on assumptions 1-3 one could start a computation of the problem which
would have to take all possible outcomes of cellular growth and crypt segregation
into account. The number of combinations however increases exponentially with n
which makes the task numerically difficult. On the other hand, such a computation
is not required because the experimental observation of the evolution of individual
crypts over time is not possible. The experimental observables available are only
expectation values averaged over certain time periods and populations of crypts.
This justifies the following assumption.

Assumption 4 ( Effective crypt approximation):

The evolution of a population of crypts (with all the possible combinatorics) can
be approximated by consideration of an effective probability distribution for an
average crypt and a separate counting of the total number of crypts.

This assumption has the advantage that the dynamics of the number of crypts
and the cell distribution per (effective) crypt can be separated. It allows the use of
a particular renormalization procedure for the calculation of the probability distribu-
tions. Let P.(S,) denote an appropriately defined effective probability distribution
of stem cells in step n. Then one has to assume fission of those crypts with S, = S;
cells. The fraction of crypts which is added by this doubling process is given by

g§= 2 Pu(S,= l)/{ Y PlS.=i)+2. ¥ P;:;f(sn = 1)} (3)
i=Sy i<Sy i=Sy \

g can be used as a renormalization factor because it records the excess crypts

originating from the fission process. Equations (2a-c) determine the transition from

n to n+1. By the cell division and crypt fission processes one obtains a new

distribution P(S,.,) which is not properly normalized because the increase in crypt
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numbers due to fission is not taken into account properly. One can return to a
properly normalized effective probability distribution including crypt fission via a
renormalization in which the fraction of crypts not having divided is weighted by
a factor (1 —g) and the new crypts by a factor g yielding:

Pyl S,+1=1)=P(S,4,.=i|S5,>0). (1-g)+P(S,.,=i|S,=5).g (4)

Scheme of the model and numerical approximation

(a) Model
l. Cellular branching process

® . O (e}
.< ‘< .< ® Stem cell
or or
® o ° O Differentiated cell
P+ qg + r =

2. Branching process of subunits

@ —0—0O
©— ‘ =& @ O s comann

(5,5)
(b) Approximation (effective probability distribution)

8{1/2,5)

Probability

Pett (5,, /5n>0)

Fraction of

Fraction of crypts in fission
crypts going 4
extinct 0 /2 S, g.'

No. of stem cells

FIG. 3. (a) Describes the basic model assumptions 1 and 2: (1) The cellular branching process:
schematic summary of the model concept. With probabilities p, r, and g the stem cells (full circles)
produce 2, 1, and zero daughter stem cells; (2) The branching process des¢ribing the growth of subunits
(crypts) containing stem cells (dots). Within a subunit the cells may grow until their number exceeds
S,. Then the subunits divide and the cells are distributed. (b),Approxmatwe model of the evolution of
the crypt population. By consecutive averagmg over the daughter crypts one defines an effective average
crypt and counts the number of crypts in the population separately. The dashed line describes the effective
conditional distribution P, (S, ]S, >0). Due to the processes 1 and 2 a transition is generated leading
to a not normalized distribution (full line). Due to fission one obtains two new crypts propor-
tional to the shaded integrals. In order to obtain P,4(S,.,) one has to renormalize the distribution. Con-
sequently onedetermines the extmcnon rate Pg(S,,=0) and obtains the conditional probability

eﬂ(sn-H I Sn+l > 0)
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With these quantities one can derive all other quantities of interest. Let C, denote
the number of crypts in step n. The average number of crypts is then given by

E(Cn-*-l):E(Cn)[Z P(Sn-é—l:l]Sn-H;éO)]' (5)
i=1
The fission probability (rate) is defined by
¢:= Z Pef((Sn=i'Sn#0)a (6)
i=S,

and the extinction probability (rate) is
Qz:Peff(Sn-f-l:OlSn#O)' (7)

In addition the elimination of dead crypts implies that one has to look at the
conditional probability P.(S,., = k|S,+; #0). Thus, the entire transition process
from n to n+1 can be summarized as follows

Peff(Sn+1 = kISn+l ¢0)= C-{ Z ij(u) . Peff(Sn =j|Sn #0)

j<5f

+ X [ij(v)+ij(1_v)] P.e(S, jISn¢0)}, (8)
j=Sy
where C is an appropriate normalization factor for P.; and P,; is defined in (2).
From here the iteration continues with eqns (3) and (4). Figure 3 gives a schematic
summary of the model concept and the approximation strategy.

In order to compare the probability distribution of stem cells with macroscopic
observables a fifth assumption holds.

Assumption 5 (proportionality):
The size of a crypt is proportional to the number of stem cells in it.

Numerical Procedure and Choice of Parameters

Assumptions 2 and 3 make an analytical treatment of the model difficult. To our
knowledge theorems on conditional probabilities for controlled Galton-Watson
processes do not exist nor do they for the type of process considered here. Only
for simple GWPs is it known that a stationary conditional probability distribution
exists in the subcritical case (m <1). One can show (Jagers, 1975) that under these
circumstances lim P(S, = K|S, >0) = bk exists and ¥, bx =1. In the fission process
the average number of offsprings my in a crypt is smaller than 1. As the qualitative
behaviour is mostly determined by m, we conjecture that similar statements about
stationary solutions also hold for our case. The propf is left for further studies.

The question of whether a stationary probability distribution exists could not be
answered analytically. However, assumption 4 makes a numerical calculation poss-
ible. It allows us to avoid the computation of the combinatorics of all possible
configurations which grow exponentially with generation n. The separation of the
problem into a determination of an appropriately renormalized effective distribution
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and a determination of the crypt population enables an iterative procedure according
to the above formulae. Iteration was stopped if two consecutive generations differed
by not more than 10° (L,-measure). Convergence of the iteration is generally fast
(in the order of 100 iteration steps) and independent of the initial distribution [if
q> >0, with & sufficiently large (e.g. 107°)].

There are only three free parameters in the model. One is the fission threshold
S;. Based on data it is assumed to range between 4 and 64. For numerical purposes
values of 4, 8, 16, 32, and 64 are used. The second parameter is the doubling time
T of the number of crypts. It relates to the microscopic parameters p, ¢, and r via
the formula (2p+r)” =2 and p+ q+r = 1. For numerical purposes values of 12, 25,
50, 100, 200, and 400 generations are used for T (one generation corresponds to
one cell cycle which is about 1 day). As a consequence it remains for one of the
microscopic parameters to be chosen. We will usually chose the probability for
asymmetric stem cell division r as the third parameter. It will be varied between 0
and the maximum value r,,, which is given by

Fmax =2 =27, %)

Typically r=0,0-6, 0-9, 0-97, 0-99, r..x is chosen.

Model Results

STATIONARY PROBABILITY DISTRIBUTION

Numerical calculations of the effective probability distribution (P.¢) were under-
taken. The procedure exhibited rapid convergence towards a stationary distribution
which was (under minor restrictions) independent of initial conditions. However,
shape and position of the distribution was found to depend strongly on the choice
of the parameters Sy, r and T. This dependence is complex.

Figure 4 gives a number of examples for the distribution of stem cells per crypt.
The distributions in the left three panels [(a), (¢) and (e)] are obtained for the same
threshold parameter S; and the same doubling time T. It is apparent that variation
of the asymmetric division r drastically influences the probability distributions. For
low r (e.g. 0-6) the distributions are broad and crypts with very few and many stem
cells are likely. The coefficient of variation exceeds 0-5. For very high r (>0-99)
the distribution is shifted to the right and the mode approaches 1/25;. Coefficients
of variation become as small as 0-25. In these cases the prdb.ability to have crypts
with few stem cells is very small. In the remaining three panels [(b), (d) and (f)]
either the doubling time T or the threshold parametér S, is changed. Shortening of
T and reduction of Sy generally broaden the distribution relative to S;.

Comparison of the effective probability distribution of stem cells with the size
distribution of crypts (Fig. 2) suggests that the broad distributions associated with
small r, high T and low S; are qualitatively not consistent with the data. In particular
distributions with a flat left-hand side do not exist for S; <8.
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F1G.4. Examples of effective stationary probability distributions obtained for various sets of parameters
(discussion see text):

T S, r
(a) 400 32 0-6
(b) 50 32 06
(c) 400 32 0:97
(d) 50 32 0-97
(e) 400 32 0-998
(f) 400 8 097

‘vx.'

EXTINCTION AND FISSION P’ROBABILITIES :

While the comparison of stem cell distributions with crypt size distributions
depends on the proportionality assumption the extinction (EP) and fission (FP)
probabilities do not. One can therefore expect to gain a good quantitative insight
by considering how EP and FP change with variation of the three essential model
parameters. Extensive numerical investigations were undertaken to explore the
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behaviour over a wide range of reasonable parameters. Two-dimensional projections
of the results are displayed in Fig. 5 (fixed T) and Fig. 6 (fixed Sy) with variation
of the other two parameters.

Figure 5(a) and (b) shows the extinction probabilities obtained from the stationary
effective probability distribution. Each point in the diagram represents one calcula-
tion for a fixed combination of parameters. For example, the combination of r =0-9,
S;=32 and T =50 is associated with a probability of 7-4 X 107° that a given crypt
dies due to loss of all its stem cells in the next generation (next cell division). The
lines interpolate between model scenarios of equal values of r. It becomes apparent
that for given T and r the EP declines monotonously with increasing S;. This
dependency is, however, weak if r is small (<0-6) but strong for large . In the first
case EP may change by two orders of magnitude in the latter case by 10 or more.

One can relate these diagrams directly to experimental observations. As discussed
above the data indicate that the extinction rate is realistically lower than 0-001/cell
cycle (Table 1). Consequently all model scenarios above the dashed horizontal lines
can be considered as unrealistic. Apparently only models with sufficiently large r
and S; can give EPs consistent with the data (scenarios below the dashed lines).

Figure 5(c) and (d) shows similar plots for the fission probabilities. The FP
declines monotonously with increasing r and Sy, but now the dependency is stronger
for small r than for large r. Interestingly, there appears to be an asymptotic value
which depends only on T and not on the other parameters.

One can again relate these diagrams to experimental observations. As discussed
above the data indicate that the fission probability is lower than 0-006/cycle but
higher than 0-0013/cycle. Thus, only the scenarios which lie between these values
are consistent with the data. For T =50 none of the models fulfills the criterion.
They all lie outside the range consistent with the data (dashed line).

Figure 6 shows a different projection of the parameter space with the threshold
parameter S, being fixed (16) and T and r as variables. Figure 6(a) shows the EP
and Fig. 6(b) the FP. Again one finds that higher values in r are associated with
lower EP and FP. However, EP is increasing with T (for given fixed r) and FP is
decreasing with T. This dependency is weak for large T and one can conjecture
asymptotic behaviour of EP and FP for large T. .

Consistency with data can again be checked as before. Taking these consistency
conditions together one can obtain some conservative lower estimates for r and S;.
Given that the crypt doubling time is not shorter than 100 stem cell cycles models
consistent with the data on extinction and fission probabilities can only be obtained
if r=0-8 and S;=8. |

et

RELATIONSHIP BETWEEN CONVENTIONAL‘GWP AND GWP WITH THRESHOLD
‘ DEPENDENT FORMATION OF SUBUNITS

As the cellular (microscopic) growth processes in the conventional GWP and the
GWP with threshold dependent segregation into subunits are basically the same
(p, 1, q) the question arises how one can compare the two.
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FiG. 6. Extinction (a) and fission (b) probabilities for fixed threshold (S, = 16) and variation in T and r.

 In a conventional GWP without segregation the probability of a population of
size S to go extinct in one generation is given by = g° ie. log (Q)=S.log(q)
(Vogel et al., 1969). The relationship of log (2) and log (q) is linear.

Figure 7 shows analogous log (Q2)-log (gq) plots for the GWP with segregation.
Again each point describes a model scenario with one specified set of parameters
(S; fixed at 32). The free parameters were T and a parameter K defined as

K=p/(p—q), (10a)

K is introduced to select model scenarios with an equal fraction of symmetric stem
cell division (p) in the growth process (p — g > 0). One obtains

g=0""-1)(K-1) (10b)
r=1+(1-2K)2""-1). (10c)

Thus, specification of T and K give unique values for g and-». Numerical calculations
were undertaken for various K (2, 4, 10, 30, 100). The results ‘are shown in Fig. 7.
Lines connect values of models with equal K b‘ut varying T (12, 25, 50, 100, 200,
400 wherever possible). Apparently the relatlonshlps for equal K are linear and
furthermore they appear to have the same slope irrespective of K. It is justified to
assume a linear relationship of log () and log (q) also for the GWP with segregation:

log (Q) = Ser - log (9) + C(K, 5y). - (11)
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FiG. 7. Log (Q)-log (q) diagram for fixed threshold S, and variation in T and K =p/(p—gq). The
slope of the curves can be interpreted as effective stem cell number.

This relationship implies that one can translate the GWP with segregation into a
conventional GWP with an effective number of stem cells S.. Linear regression
analysis reveals that S is close to 1 (1:3-1-5). Apparently S is much smaller than
S;. This can be understood as the extinction probability of a system with S cells is
q°. Given the small values for ¢ [see (10b)] any power of g will rapidly converge
to zero. Consequently the modified GWP considered here is behaving qualitatively
like a conventional GWP with a small effective stem cell number. The quantitative
differences depend on the choice of K and S; and are reflected by the additive term
C(K, S;). This term can be interpreted as the logarithm of the probability of having
S.ir stem cells in the equilibrium configuration.

Therefore, one expects for small values of S, that the curves for different K are
more similar than for larger S;. Indeed calculations show that the K-curves are very
close in the case of Sy =4 and spread over orders of magnitude for S, =64 (figures
not shown).

Discussion

In this paper we have discussed properties of a new type of 'étoch_astic branching
process. The basic process is a microscopic cellular renewal process of stem cells
which is basically described by a conventional Galton-Watson Process. The new
component is a threshold dependent segregation of the cells into subunits.

Biologically the investigation was undertaken to understand the birth and death
process of macroscopic intestinal crypts and relate it back to the microscopic birth
and death process of a few epithelial stem cells which are the constituents of the
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crypt. Consideration of the segregation process allowed us to introduce a new
(weaker) concept of stability. We found that even in the case of supracritical growth
of the entire cell number the probability distributions (per effective crypt) are
stationary. It is essential for this concept of stationarity to consider probabilities
conditioned on non-extinction. This implies that irrespective of the actual number
of subunits (crypts) present the distribution is invariant. Furthermore, this concept
allows for a meaningful definition of a fission rate. The extinction properties of this
process are different from those of a conventional GWP.

It is noteworthy that similar processes of cellular growth and fission have been
analytically studied in some detail within the framework of deterministic models
using partial differential equations (Diekmann et al, 1983). However, since a
stochasticity of the growth is not taken into account extinction is not possible in
these models. Thus, these results cannot directly be related to our problem but
appropriate modification of the PDE approach might be an interesting future
perspective.

The particular system of intestinal crypts can quantitatively be explained by the
stochastic branching model proposed. It was designed to explain four sets of data:
the size distribution of crypts, the low extinction rate, the apparent fission rate and
the growing number of crypts. We conclude that these phenomena can quantitatively
be explained by a stochastic branching process of epithelial stem cells if the following
conditions hold: (1) the probability for asymmetric stem cell division r is at least
0-8; (2) the number of stem cells doubles within a few hundred cell generations;
(3) the threshold value S; is at least 8. The high value of r is biologically remarkable.
If one is considering individual crypts on short time scales one can assume with
sufficient precision that the divisions are only asymmetric. This gives a justification
for a previous model of our group in which the short-term steady-state of single
crypts was described on the basis of the assumption of strictly asymmetric divisions
of stem cells (Loeffler et al., 1986; Potten & Loeffler, 1987). In contrast, some
stochasticity is essential for the description of the long-term behaviour of individual
crypts and for consideration of populations of crypts. The stochastic nature of the
process would also predict that the sizes and fission times of adjacent crypts are
only weakly correlated, a finding actually reported by Totafurno et al. (1987).

The biological basis for the asymmetric division is unclear. Several explanations
are conceivable. Stem cells might be defined by their attachment to some supportive
neighbour cell, or they might be determined by some internal marker attached to
the mother chromosomes (Cairns, 1975). Discrimination of these possibilities is
presently not possible. Biologically the most important conclusion is that the crypt
behaviour can entirely be explained by the stem cell behaviour. This makes it clear
that future experiments should centre around understandmg these cells and their
control in more detail. e

A number of simplifying assumptions entered into the model. First, it is not likely
that all stem cells exhibit the same cell cycle A realistic model would have to
consider a distribution of slowly and rapidly cycling cells (Potten, 1990). Second,
the effective probability distributions are technically achieved by averaging over
two daughter crypts. Further simulations showed that one can expect higher order
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corrections for EP and FP of few percent if one takes more members of a crypt
family into account. Third, and most important the assumptions on the segregation
process itself may be too simplisitic. It can be doubted whether stem cells are
independently allocated to the daughter crypts. Due to the spatial arrangement of
cells in a ring at the bottom of the crypt this is rather unlikely. On the other hand,
experimental observations suggest that the fission process usually tends to halve the
crypt bottom and thereby the stem cell population. The binomial distribution
B(1/2, S) is characterized by a coefficient of variation that declines according to
1/VS. Consequently, the binomial fission process tends to result in a near perfect
halving process the larger S; is chosen. Therefore, the process assumed appears
nevertheless to be an acceptable description of the crypt fission process. In addition
it is important to note that any asymmetric segregation would produce model
scenarios with higher extinction and fission probabilities for given T, r and S;. In
this sense the values obtained for r can be considered as conservative lower estimates.

With respect to the biology of the intestinal crypt the present model allows a
number of predictions to be made whose further experimental investigation is
suggested. The first relates to the cellular growth process. The stem cells in the
model are all indistinguishable from one another, each having the same growth
possibilities. This implies that they are all equal competitors. Recently it was shown
that one can label a single stem cell and all its offsprings by a particular label (e.g.
Winton et al.,, 1988). Our model predicts that in the long run only two situations
can be found. Either this stem cell and its offsprings will entirely be lost from the
crypt or they will populate the entire crypt. Long-term coexistence is unlikely. Thus,
the model predicts that any crypt will ultimately converse to monoclonal phenotype.
A more detailed examination of this effect and of the time scales involved in the
conversion to monoclonal phenotype is in preparation.

A second prediction refers to the threshold dependent crypt fission. The model
suggests three ways by which an increase in crypt numbers (i.e. crypt fission rates)
may occur.

First, there could be a reduction in the fission threshold which would lead to
more but smaller crypts. Secondly, there could be a reduction in r (with p-g=
constant, i.e. same T), leading to more crypts with a much broader spectrum in
sizes (greater Cy ). Thirdly, there could be an increase in the growth advantage of
stem cells (increase in p-g, i.e. shortage in T), which would lead to more equally
sized crypts. It should be interesting to find out whether these processes play a role
in ontogenesis (presumably the first would), or the in recovery following damage
or even in the onset of adenoma formation (presumably the second and third would).
This should encourage experimental investigations relating the frequency and mode
of crypt fission to the behaviour and characteristics of stem cells in the crypts under
various circumstances. v

Although exemplified for the intestinal crypt the process dxscussed here should
in principle be applicable to other systems in biology, as well as ecology and
sociology. The general phenomenon described is the formation of groups, cohorts,
colonies, families, parties, subsystems etc on the basis of an underlying growth
mechanism of individuals (cells, animals, societies). : '
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