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SUMMARY

Evaluation of the treatment effect on cytogenetic ordered categorical response is considered in patients
treated for chronic myelogenous leukaemia (CML) in a clinical trial initiated by the East German Group for
Hematology and Oncology. A simulation model for the cytogenetic response (per cent of Philadelphia
chromosome positive metaphases) serially measured in CML patients was constructed to describe roughly
the sparse information available in medical literature. The model was used to construct a summary measure
of response and to formulate the treatment effect as a regression with U-shape distributed ordered
categorical data. Two simple models (vertical shift model and pooled conditional response model) were
specifically designed to model the treatment effect ‘observed’ in a simulated ‘pilot’ data set. The powers were
contrasted with the traditional proportional odds and binary models. The comparison was based both on
repeated sampling from the simulated model and on bootstrap of ‘given’ pilot data set. We show that the
specific models that address the treatment effect directly (as anticipated from pilot data) can gain in power as
compared to the traditional proportional odds model when evaluated by bootstrap. However, the propor-
tional odds model appears to be better with repeated sampling from the simulation model. To explain this
discrepancy we generated ‘pilot data sets’ repeatedly from the simulation model and showed that the
ordering of the bootstrap power estimates is unstable with reasonably complex models dependent on the
random fall of the pilot data sets. This phenomenon clearly limits the usefulness of subtle modelling the form
of the treatment difference observed in a small pilot data set. © 1998 John Wiley & Sons, Ltd.

1. INTRODUCTION

In planning a clinical trial a decision maker faces the problem of estimating the sample size and
choosing the test which is most powerful in deteciing the treatment effect. The decision is made
under uncertainty, and at best a small pilot sample is available. One approach is to base the
decision on bootstrapping the pilot data.!*? In planning a recent clinical trial we made an attempt
to assess the reliability of this strategy by invoking the sparse information available in the medical
literature to construct a reasonable simulation model of the trial.
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We consider a clinical trial comparing two treatment groups with bounded ordered categorical
response U. The Wilcoxon two-sample test is the most popular test when the distributions (F and
G) of the outcome score in the two treatment groups are not normal. Assuming a parametric
representation of the set of alternatives it is possible to estimate the power of the test given the
anticipated magnitude of the therapy effect in terms of the parameters. It is conventional to
associate the Wilcoxon test with the location-shift Hodge—Lehmann?® alternative

G(x) = F(x — A). (1)

However this is not applicable when the response is bounded.

Another suitable set of alternatives is given by the proportional odds model (McCullagh*) for
ordered categorical response U € {Cy, Cy, ..., C,}, where {C;}¥_, are the possible categories of
response, with C; being better than C; if i < j. Let F; be the probability for a patient in the first
treatment group to be in C; or better, and let F; = 1 — F; be the probability to be in C;,, or
worse. Denote by G;, G; the similar probabilities in the second group, respectively. The propor-
tional odds model specifies a parametric transformation of the form

log(Fy/F;) = 1og(G;/G) + 0 )

where 0 is the log odds ratio.

We will consider the categories based on a real valued score, so that the functions F and G are
thought of as distribution functions (DF) of non-negative random variables U. The inference on
f can be based on the marginal likelihood ? marg» the baseline function (F or G) being treated as
nuisance. Let xy, ..., Xyg; ¥y, ..., yy be the samples of U in the two groups, respectively. Let A; be
the set of ranks occupied by observations from group j in the joint order statistics &, ..., &y o ns
( = 1, 2). The marginal likelihood is defined as the probability to observe a given ordering of the
data £ ima(0) = Pr{4,, A,} and it would be given by integration of the full likelihood over the
subset of RM*" on which 0 < &; < -+ < &4y, if the ordering were complete. Since we actually
have ordinal (tied) data, only a partial ordering is available. The likelihood is then given by a sum
of the terms corresponding to the likelihood under a complete ordering over all such complete
orderings that are consistent with the observed partial ordering. The Wilcoxon test can be viewed
as the score test for Hy : § = 0 with the semi-parametric proportional odds regression (2) based on
the likelihood £, (Jones and Whitehead®). We will follow this interpretation below.

In planning the chronic myelogenous leukaemia (CML) clinical trial (Section 2) we found that
the anticipated distribution of response is U-shaped and bounded on [0, 1], the most important
categories being Cy: U = 0 (complete responders) and C,: U = 1 (non-responders). The problem
of planning clinical trials with such response profile has been recently studied by Lesaffre et al.!
and by Hilton.® It was reported that approximate formulae for the power based on the model (1)
Lehmann® and (2) Whitehead” overestimate the power of the Wilcoxon test under the U-shaped
response. A slight overestimation with the model (2) by the Whitehead method based on the score
test was supposedly explained by the presence of scale effect in addition to the location shift.
However, we have found (Section 5) that the ML estimates for the DF F and G based on the
marginal likelihood fit the saturated curves perfectly, so that the proportional odds model
captures the moderate scale effect in the U-shaped distribution of response, at least in this
particular case.

Having constructed a simulation model of the CML trial (Section 3) we found that the therapy
affects predominantly the extreme categories C, and C,. Part of the reason for this effect is that an
increase in therapy efficacy moves the patients to the left on the response axis while the response is
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bounded. Consequently, the intermediate categories are subject to small changes as they experi-
ence both inflow and outflow, in contrast to the extreme categories. It seemed unnatural to
express the effect as a combination of shift and scale transformations and we tried to address it
directly (Section 4). The models are contrasted in Section 5.

2. MEDICAL BACKGROUND

CML is a clonal disorder of the primitive haemopoietic stem cell characterized by the presence of
a chromosomal marker, the Philadelphia chromosome (Ph), in the leukaemic cells. In the past, the
prognosis of patients with CML was poor. Until 1980 the focus of CML therapy was on
haematologic remission (normalization of blood parameters) which was successful in 70 per cent
to 80 per cent of patients. However, these remissions were mostly only symptomatic because
cytogenetic studies in treated patients showed persistence of Ph-positive cells in most (> 90 per
cent) of the marrow metaphases indicating the presence of residual disease in most patients
(Kantarjian et al.®).

Recent advances in CML therapy are due to Interferon (IFN) that allowed for a cytogenetic
response (< 90 per cent Ph+) in 40 per cent to 60 per cent of patients after prolonged
application. The lowest percentage of Ph+ cells achieved by therapy has proved to be the
strongest indicator for the prognosis. According to the protocol of the CML clinical trial initiated
by the East German Group for Hematology and Oncology, those patients who fail to achieve
complete (CR = 0 per cent Ph+) or partial (PR =1 to 35 per cent Ph+) cytogenetic response
during the first year of the therapy are classified as bad responders and who qualify for an
intensified treatment.

All patients should have received intensive chemotherapy induction initially when entering the
trial, followed by stem cell harvest from the peripheral blood. This manoeuvre aims to collect
stem cells with less aggressive characteristics to be used later if the disease becomes more
aggressive. The procedure is followed by the one-year therapy with cytostatics + IFN to main-
tain and improve the cytogenetic response. Typically, application of IFN decreases the percent-
age of Ph+ continuously. Bad responders after one year are treated by high dose chemotherapy
with subsequent autologous stem cell transplantation in the hope of restoring the transient
chronic phase of the disease.

The main focus of the trial is to contrast two modes of maintenance chemotherapy: IFN + HU
(Hydroxyurea) versus IFN + ARA-C.

The main problem in evaluating the response lies in the fact that the true per cent of Ph + cells
remains latent. The estimation of the per cent of Ph+ cells by bone marrow biopsy and
cytogenetic analysis is a costly and unpleasant procedure which can hardly be made more
frequently than once every 4-6 months. At each evaluation some small number of metaphases
k (usually 5 < k < 50; 25 on average (Grossman et al.’)) are extracted and the proportion v of the
Ph-positive ones is determined. It is clear that v is a binomial frequency, the true proportion being
its expectation. The necessity to make an early decision on the transplantation hinders a long-
term follow-up of the marker.

Another complication is the loss of therapy efficacy due to tumour resistance to the drug or
a discontinuation of the therapy due to toxicity. Both events provide an unobserved nadir in the
trajectory of v(z).

The evaluation of v(t) is planned at t = 0, 0-5, 1 (time in years). Bad responders (v(0), v(0-5),
v(1) > 0-35) receive high dose chemotherapy with stem cell support. A similar strategy has been
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used at the M.D. Anderson Cancer Center (Houston, Texas; Kantarjian et al.'°). Evaluation of
the efficiency of maintenance therapy is based on the summary measure

U= min{s(0) (03, v(1)}, i={ T HY o)
i = min{v(0), v(0-5), v(1)}, i=
’ 2, IFN +ARA - C

with the distribution functions F and G corresponding to i = 1, 2, respectively. U assumes its
values in one of the k + 1 categories {Cy, C,, ...,C,} = {0, 1/k, 2/k, ..., 1}. According to the
protocol of the trial at least 25 metaphases should be analysed at each evaluation. It should be
noted that an increase in k would result in a better expressed treatment effect with the same
response pattern. Anticipating a slightly conservative inference, we assume k = 25 in the com-
putations below.

3. SIMULATION MODEL

Based on observed trajectories v(z) of the proportion of Ph+ cells in 8 CML patients published in
Grossman et al.” and Kantarjian et al.!® we decided to describe the data by a two-phase linear
regression, truncated by the natural borders v =0 and v = I:

v(t) ~ Bin(k, u(2))

where
0, u*(t) <0
u(t) = {p*@), 0<p*(@<1 4)
17 l’l*(t) 2 1’

*m_{mm+u—ma t<T
P E VO + =T+ ~T), t>T.

The parameter A characterizes the rate of tumour growth, while f is a measure of efficacy of the
IFN + HU/ARA-C therapy continuously applied in CML patients. The random variable T de-
notes the nadir point at which resistance starts to dominate. The slope of the trajectory before T is
the superposition of the therapy effect and the tumour growth. After the therapy loses its efficacy
(at time T') the slope is given by pure tumour growth. B, A, T are thought of as gamma distributed
random variables producing a random effects model. Some possible trajectories u*(f) are given
in Figure 1.

The distribution of the random variable ;(0) was borrowed from the preliminary pilot data on
patients, who have already passed the induction chemotherapy phase (Table I). The distributions
of the other variables were fitted empirically to the information available in medical literature as
given in Table II.

The variance of the random effects distributions was specified to fit the time to first cytogenetic
response curve from Ozer et al.!! That finally led to exponentially distributed random effects,
which is perhaps due to high heterogeneity of the data. The mean value of the time to nadir was
taken as 1'5 years, as estimated by a medical expert. Clinicians felt that the trial should have
power to reveal an improvement in the ‘true’ success rate (probability of PR or CR) of 0-2 (an
improvement from 0-35 to 0-54 is assumed). We consequently deduce the improvement in S from
0-45 to 1125 to fit the above figures.

© 1998 John Wiley & Sons, Ltd. Statist. Med. 17, 1909-1922 (1998)
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Figure 1. Possible trajectories of u*(¢). Solid lines correspond to random effects variables set at their means: group 1
baseline therapy; group 2 improved therapy

Table I. The distribution of u(0)

Value of u(0) 0 0-17 0-82 0-97 1
Probability 0-03 013 0-22 0-19 0-44

Table II. Mean values of random effect parameters and probability of CR or PR as available from medical
literature and the ones assumed in the model

Parameter Simulation  Kantarjian et al.® Ozer et al.'' Kantarjian et al.'® Grossman et al.’
model

Pr(U < 0-35) 035 03-0-4 04 - -

A—p —-02 - - —-02 - 02

A 0-25 - - 0-14 0-98

It is expected that the discontinuation of the therapy due to toxicity happens in 10 per cent of
the patients of the IFN + HU group and in 30 per cent of the patients of the IFN + ARA-C and
that toxicity is primarily attributed to HU or ARA-C. The time to such discontinuation is taken
to be uniformly distributed in the interval [0, 6 months]. The risk of the discontinuation is
considered as independent and competing with the time to that nadir. Patients with severe
toxicities are supposed to change treatment arm. However, their responses are still attributed to
their initial arms according to the intention to treat principle. Adding the above effects and taking
account of the variance of U due to the evaluation procedure results in lower success rates: 0-27
(worse therapy) versus 0-42 (better therapy).
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Figure 2. The response densities as generated by the simulation model: (a) baseline therapy; (b) improved therapy

The profile of the response distribution (F, G) is to a large extent influenced by the distribution
of the proportion v(0) of Ph + cells in patients at time ¢ = 0. Typical histograms of the response
densities generated by the above model are given in Figure 2. They correspond to a sample of size
80 (each group) from the simulation model, which we later use as quasi pilot data to test the
methodology. The ‘true’ distributions from the simulation model based on 5 x 10° replicates are
shown in Figure 3. It is remarkable that the response profile is very similar to the one encountered
by Lesaffre et al.! in another context. We note that the treatment effect is predominantly
expressed in the increase in the number of CRs and a similar decrease in the number of
non-responders, while the other categories are only slightly affected.

We considered it unreasonable to develop the testing procedure on the basis of the random
effects model (4) although some related methods are feasible.'?''* The model (4) is clearly
overparameterized and we would have to make strong parametric assumptions to assure

© 1998 John Wiley & Sons, Ltd. Statist. Med. 17, 1909-1922 (1998)




REGRESSION WITH BOUNDED OUTCOME SCORE 1915

0.9

0.8

Q.7
0.6 Group 2

0.5 Group 1
0.4

0.3

Cumulative distribution function

0.2

0.1

o
o
N

0.4 0.6 0.8
Proportion of Ph+ metaphases

—_

Figure 3. The ‘true’ distribution functions of the response as estimated by 5 x 10° simulations (thick lines) and the ones
corresponding to quasi pilot data (a sample of size 80 (each group)) as given by the simulation model: group 1 baseline
therapy; group 2 improved therapy

a reliable estimation procedure with just two highly correlated serial measurements per patient.
Investing so much pre-knowledge seemed unwise, and we decided to use the summary measure
U as suggested by Matthews et al.'* and to apply ‘surface’ models to characterize the treatment
effect on the summary measure.

4. REGRESSION MODELS

Given the distributions F and G and the numbers of patients m; and n; in each category C,, in the
two treatment groups, respectively, i = 0, ..., k, we can write the multinomial likelihood of the
observed response as

k
¢ =), [m;log(AF;) + n;log(AG))] (5)
i=0
where AR; =Pr{UeC;} for R=F,G.

The saturated model is obtained by treating both functions F and G non-parametrically
resulting in the likelihood ¢/, and the obvious estimates AF; = m/M, AG; = n/N, N =Y*_ n,
M =T om;

Under the homogeneity hypothesis H, we have the likelihood ¢, and the pooled estimates
AF; = AG; = (m; + ny))/[(M + N).

4.1. Proportional odds model

A semi-parametric regression model specifies a parametric transformation F — G, the baseline
function F being treated non-parametrically. The proportional odds model (POM) (2) is the most

© 1998 John Wiley & Sons, Ltd. Statist. Med. 17, 1909-1922 (1998)
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popular one with ordered categorical data. We rewrite the proportional odds model (2) in the
form

_ F
G= net FI =gy 0~ exp(0). (6)

If  is small and the sample is large, a score approximation can be used to obtain the estimate of
0 in the form

0=2z/v (7)

where Z is the efficient score and V is the Fisher’s information based on some likelihood of 0.
Using the marginal likelihood ¢, to avoid joint estimation of  and F (or G) results in the
following expressions:’

ot 1 u
7 — fmarg N; ~ N,
b
Na,b=Zni,Na,b=0’a>b
V= 02/ma,g N MN(M+N) 1 i m; + n; 3
00 =y 3(M +N + 1) S IM+N| |

Alternatively we can fit the full model exactly by maximizing the likelihood (5). Usually, the
software for logistic modelling based on the Newton-Raphson algorithm is used to fit the
proportional odds model (for example, the SAS procedure LOGISTIC). We have used a simpler
algorithm, reducing the problem to solving two nested algebraic equations. Proceeding from the
likelihood equations:

a/ N‘—nk _ ,+1 +n,)F
- il THTL ®)
Mo ; Fi(1 —no) + 1o
AF; AF; AFk i=j Fi(1 ~170)+I70
define the function ¢ by:
k
p(AF) = Y AF,_, (10)
i=0

where AF,_; are obtained recurrently from (9). It is easy to show by induction that ¢ is an
increasing function. In addition we have ¢(0) = 0, (1) > 1, so that the solution of the equation

@(AF) =1 (11)

exists and is unique. Proceeding from (11) we have the AF; as functions of no which reduces
the problem to solving the algebraic equation (8) with respect to no- We can also substitute
the approximate 6 given by (7) in (9)—(11) to get the score approximation for the baseline
function F.

© 1998 John Wiley & Sons, Ltd. Statist. Med. 17, 1909-1922 (1998)
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4.2. Vertical shift model

Suppose that the therapy effect is associated with a flow of patients through the categories so that
a fixed proportion 7, of patients in each category except C,, are moved to a better category. This
results in the distribution function G simply shifted vertically against F (vertical shift model,
denote by VSM)

Gty=F(t)—n, O0<t<l (12)

The simple effect (12) is the first one which comes to mind when observing the distribution
functions in Figure 3 and the similar functions in Lesaffre et al.! According to (12) the changes
occur exclusively in the probabilities associated with extreme categories Co and C,. Fitting the
model (12) we get the likelihood Zvgy and the estimates

AF,=(m,+n,)/(M+N), l=1,,k—'1

My m0+n0+mk+nk

AF[):
m0+mk M+N

(13)

my mgy + ng + my + ny
mgy + my M+ N

AFk=

The derivation of these estimates as well as those of (15) (see below) from the score equations is
straightforward but cumbersome and therefore not presented here.

The likelihood ratio statistics D = 2(¢ysy — ¢,) of the homogeneity hypothesis is expressed as
a function of the numbers of patients in the extreme categories because the estimates AF,
i =1, ...,k — 1 coincide with that of the saturated model under the homogeneity hypothesis.

4.3. Pooled conditional response model

The VSM (12) can be relaxed by assuming independent changes in the probabilities associated
with C, and C, and the identity of the conditional distributions of the response in the two
treatment groups, given the intermediate response (Cy, ..., Cy-1). We have the pooled condi-
tional response model (denoted by PCRM)

AGO =AF0 +A0, AGk :AFk"Ak

AF; AG;

1 —AF, —AF, 1—AG,—AG, ' 77 (14)

Fitting the model (14) results in the likelihood ¢pcrm and the estimates

m; + n; AG m,-+n,-

le—l), o ( Mlk—l\)’

M{1+— N{1+—

( My -y Ni-1
k-1 k=1

Nyy-1= Z n, Mi,-,= Z m;

i=1 i=1

AF; = i=1,.. k=1, (15)

while the estimates AF,, AF,, AGo, AG, coincide with that of the saturated model. Again, the
likelihood ratio statistic D = 2(£pcry — £,) is related to the extreme categories.

© 1998 John Wiley & Sons, Ltd. Statist. Med. 17, 1909-1922 (1998)
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Also, the simple binary approach and the Pearson’s x* statistic'® will be used to test the
homogeneity of the two groups with the response U;, i = 1,2 dichotomized into the two
categories (U; < 0-35) versus (U; > 0-35).

It should be noted that other effects might be considered by multiplying the baseline density by
some specified function as suggested by Lesaffre et al.' or by introducing a shift and scale
transformation of the baseline distribution as suggested by Hilton.® In fact the possibilities to
refine the model and improve its fit on the basis of the available pilot data are without limit. In the
next section we show that this strategy is unreasonable since the reproducibility of a test’s
superiority is low. We contrast the models POM (6), VSM (12), PCRM (14) and the binary model
using resampling from the Figure 2 as well as repeated sampling from the simulation model
(Section 3) directly.

5. NUMERICAL EXPERIMENTS

Since the patients are entering the subsequent trial which focuses on the effect of stem cell
transplantation, the estimate of the baseline function is considered as equally important to predict
the number of patients to be transplanted after 1 year.

The regression models were fitted to the quasi pilot data (80 patients each group) correspond-
ing to Figure 2 as shown in Figure 4. Seemingly, all the models capture the effect equally well.
However, bootstrapping the data with 10° replicates shows superiority of the models (12) and (14)
over the traditional proportional odds model (6) as given in the Table III. We have tuned the
number of replicates to attain an accuracy of 2x 107 in terms of the size of 95 per cent
confidence interval for estimating power from bootstrapping the pilot data.

It should be noted that the score method by Whitehead” provides a conservative estimate for
the exact power based on the empirical distributions from Figure 2 in our particular case. For
example, for 80 patients we have the estimate 0-750 (compare with Table III).

We have repeated the analysis basing the sampling on the original simulation model. Although
the realization shown in Figure 2 was typical, it was not fully representative of the set of
alternatives provided by the simulation model (Figure 3). As shown in Table IV, the proportional
odds model turns out to be superior with repeated sampling from the simulation model.
Unsurprisingly, the binary approach is the worst in both settings.

We found that the ordering of the power estimates is unstable between repeated sampling from
the simulation model and bootstrapping the pilot data. Repeated sampling (200 samples, 80
patients each) from the simulation model and bootstrapping each such ‘pilot’ sample yields the
box plots of the power differences by models shown in Figure 5. We note that except for the
differences involving the binary model all other plots are approximately symmetric about zero.
This means the probability of the right choice of the model on the basis of pilot data is about 0-5
in our particular case, and we could just toss a coin.

In general the power of a statistical test depends on the fit of the underlying model to the ‘true’
curves. It is common to characterize this unobserved fit by the mean prediction error (estimated
by cross-validation).’® Asymptotically the leave one out cross-validation is equivalent to the
Akaike’s information criterion!” AIC = — 2/ + 2 (numbers of parameters), so that with large
samples and known number of parameters, cross-validation is not truly necessary. It is interesting
whether the ordering of powers can be predicted in a similar way. With our quasi pilot data we
found that the ordering of the POM (AIC = 869-89) versus VSM (AIC = 868-50) and of the
PCRM (870:10) versus VSM could have been predicted while a reverse ordering of the POM
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Figure 4. Fitted curves according to models POM (6), VSM (12) and PCRM (14). Solid line is the survivor function as

specified by the density shown in Figure 2. Dotted lines relate to the fitted regression models: (a) score approximation,

POM; (b) POM, jointly fitted baseline distribution and treatment effect; (c) vertical shift model (12); (d) pooled
intermediate response model (14)

Table III. Bootstrap estimates of power of the likelihood ratio test based on
the models POM, VSM, PCRM, the score test (Wilcoxon) based on POM and
the Pearson’s y? test

Model Number of patients

60 80 100
Proportional odds, score 0-639 0-761 0-846
Proportional odds, exact 0-639 0-761 0-846
Vertical shift 0720 0-831 0-904
Pooled conditional response 0-640 0772 0-860
Binary y?2 0-351 0-452 0-529

versus PCRM was observed. However, the discrepancy between the power estimates in the latter
case is too small to be interpreted. Even if an asymptotic criterion for the choice of a test becomes
available, the bootstrap will still retain its importance because the size of pilot data is usually
quite small.

© 1998 John Wiley & Sons, Ltd. Statist. Med. 17, 1909-1922 (1998)
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Table IV. Estimates of power of the likelihood ratio test based on the models
POM, VSM, PCRM, the score test (Wilcoxon) based on POM and the
Pearson’s x* test. Repeated sampling from the simulation model of Section 3

Model Number of patients
80 100 120
Proportional odds, score 0-663 0-758 0-830
Proportional odds, exact 0-666 0-760 0-831
Vertical shift 0-631 0-727 0-802
Pooled conditional response 0-579 0-682 0-765
Binary ¥ 0-526 0-611 0-691
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Figure 5. Box plots of 200 paired differences between the bootstrap power estimates obtained in two steps: 1. Generate

pilot data (80 patients in each group) from the simulation model; 2. Estimate the powers based on the pilot sample and

construct the paired differences with POS (proportional odds model, score method), POE (proportional odds model,
exact solution of the likelihood equations), VSM, PCRM or binary models

6. DISCUSSION

In planning a recent clinical trial we tried to anticipate the type and size of the treatment effect
and to choose a test to compare the two treatment groups. An easy decision would have been just
to choose the most popular Wilcoxon test. However this seemed unwise because of the suspicion
that the proportional odds model behind the test might not adequately capture the treatment
effect, resulting in biased and underpowered inference. If a pilot data set were available one could
try anticipating the outcome of the trial by bootstrapping based on the pilot data. In the absence
of a reliable pilot data set, we constructed a simulation model to fit the information available in
medical literature. The model was used to generate the outcome of a trial, which followed the
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U-shaped bounded response distribution, the treatment predominantly affecting the extreme
categories of the response.

We constructed the VSM and PCRM models to address the effect directly and compared them
with the traditional proportional odds and binary models. Bootstrapping the ‘observed’ outcome,
we found that the tests based on the suggested models outperformed the traditional ones. With
VSM and PCRM it is easier to quantify the treatment effect by specifying the changes in the
numbers of complete responders and of non-responders, while with the traditional models the
whole distribution of the response has to be anticipated. However, the proportional odds model
was found to be superior when we used the simulation model (and not the ‘observed’ realization)
to replicate the experiment.

By generating ‘pilot data sets’ from the simulation model we showed that the ordering of the
bootstrap power estimates can be unstable, dependent on the random fall of the pilot data sets,
and that the estimates based on the models of reasonable complexity (POM, VSM and PCRM)
are similar in this respect. This phenomenon clearly limits the usefulness of subtle modelling the
form of the treatment difference observed in a small pilot data set.

Even if a pilot data set is available we would recommend simulation invoking additional
information from the medical literature to assess the reproducibility of pilot data and the stability
of power estimates based on it. At the same time caution has to be exercised in interpreting the
simulation model because its adequacy is difficult to test from the data.
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